Caspase-2 pre-mRNA alternative splicing:: Identification of an intronic element containing a decoy 3′ acceptor site

被引:49
作者
Côté, J
Dupuis, S
Jiang, ZH
Wu, JY [1 ]
机构
[1] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
关键词
D O I
10.1073/pnas.031564098
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have established a model system using the caspase-2 pre-mRNA and initiated a study on the role of alternative splicing in regulation of programmed cell death. A caspase-2 minigene construct has been made that can be alternatively spliced in transfected cells and in nuclear extracts. Using this system, we have identified a 100-nt region in downstream intron 9 that inhibits the inclusion of the 61-bp alternative exon, This element (ln100) can facilitate exon skipping in the context of competing 3' or 5' splice sites, but not in single-intron splicing units. The In100 element is also active in certain heterologous pre-mRNAs, although in a highly context-dependent manner. Interestingly, we found that ln100 contains a sequence that highly resembles a bona fide 3' splice site. We provide evidence that this sequence acts as a "decoy" acceptor site that engages in U2 snRNP-dependent but nonproductive splicing complexes with the 5' splice site of exon 9, hence conferring competitive advantage to the exon-skipping splicing event (E8-E10), These results reveal a mechanism of action for a negative intronic regulatory element and uncover a role for U2 snRNP in the regulation of alternative splicing.
引用
收藏
页码:938 / 943
页数:6
相关论文
共 38 条
[1]   Defects in regulation of apoptosis in caspase-2-deficient mice [J].
Bergeron, L ;
Perez, GI ;
Macdonald, G ;
Shi, LF ;
Sun, Y ;
Jurisicova, A ;
Varmuza, S ;
Latham, KE ;
Flaws, JA ;
Salter, JCM ;
Hara, H ;
Moskowitz, MA ;
Li, E ;
Greenberg, A ;
Tilly, JL ;
Yuan, JY .
GENES & DEVELOPMENT, 1998, 12 (09) :1304-1314
[2]   U2 AS WELL AS U1 SMALL NUCLEAR RIBONUCLEOPROTEINS ARE INVOLVED IN PRE-MESSENGER RNA SPLICING [J].
BLACK, DL ;
CHABOT, B ;
STEITZ, JA .
CELL, 1985, 42 (03) :737-750
[3]   Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization [J].
Blanchette, M ;
Chabot, B .
EMBO JOURNAL, 1999, 18 (07) :1939-1952
[4]   An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing [J].
Carstens, RP ;
McKeehan, WL ;
Garcia-Blanco, MA .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (04) :2205-2217
[5]  
Chabot B., 1994, RNA PROCESSING PRACT, VI, P1
[6]   An exonic splicing silencer in the testes-specific DNA ligase III β exon [J].
Chew, SL ;
Baginsky, L ;
Eperon, IC .
NUCLEIC ACIDS RESEARCH, 2000, 28 (02) :402-410
[7]   SR protein and snRNP requirements for assembly of the Rous sarcoma virus negative regulator of splicing complex in vitro [J].
Cook, CR ;
McNally, MT .
VIROLOGY, 1998, 242 (01) :211-220
[8]   Interaction between the negative regulator of splicing element and a 3′ splice site:: Requirement for U1 small nuclear ribonucleoprotein and the 3′ splice site branch point/pyrimidine tract [J].
Cook, CR ;
McNally, MT .
JOURNAL OF VIROLOGY, 1999, 73 (03) :2394-2400
[9]  
COTE J, 2001, IN PRESS J BIOL CHEM
[10]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489