Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector

被引:76
作者
Shangguan, Mingjia [1 ,2 ,3 ,4 ]
Xia, Haiyun [1 ,4 ]
Wang, Chong [1 ]
Qiu, Jiawei [1 ]
Lin, Shengfu [1 ]
Dou, Xiankang [1 ,5 ]
Zhang, Qiang [2 ,3 ,4 ]
Pan, Jian-Wei [2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, ICAS Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China
[2] USTC, Shanghai Branch, Natl Lab Phys Sci Microscale, Shanghai 201315, Peoples R China
[3] USTC, Dept Modern Phys, Shanghai 201315, Peoples R China
[4] USTC, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[5] Wuhan Univ, Wuhan 430072, Hubei, Peoples R China
关键词
FABRY-PEROT-INTERFEROMETER;
D O I
10.1364/OL.42.003541
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A dual-frequency direct detection Doppler lidar is demonstrated using a superconducting nanowire single-photon detector (SNSPD) at 1.5 mu m. The so-called double-edge technique is implemented by using a dual-frequency laser pulse, rather than using a double-channel Fabry-Perot interferometer. Such a modification to the reported lidars enhances the frequency stability in the system level. Using the time-division multiplexing method, only one piece of SNSPD is used in the optical receiver, making the system simplified and robust. The SNSPD is adopted to enhance the temporal resolution since it offers merits of high quantum efficiency, low dark count noise, no after-pulsing probability, and a high maximum count rate. Two telescopes that point westward and northward at a zenith angle of 30 degrees are used to detect the line-of-sight wind components, which are used to synthesize the horizontal wind profile. Horizontal wind profiles up to an altitude of about 2.7 km are calculated with vertical spatial/temporal resolution of 10 m/10 s. Wind dynamic evolution and vertical wind shears are observed clearly. (C) 2017 Optical Society of America
引用
收藏
页码:3541 / 3544
页数:4
相关论文
共 24 条
[1]   Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data [J].
Banakh, V. A. ;
Smalikho, I. N. ;
Rahm, S. .
OPTICS LETTERS, 2014, 39 (15) :4321-4324
[2]  
Besson C., 2016, AEROSP LAB, V12
[3]   Dual frequency technique for Doppler wind lidar measurements [J].
Dobler, JT ;
Gentry, BM ;
Reagan, JA .
LIDAR REMOTE SENSING FOR INDUSTRY AND ENVIRONMENT MONITORING II, 2002, 4484 :82-92
[4]   Pulsed 1.5-μm LIDAR for Axial Aircraft Wake Vortex Detection Based on High-Brightness Large-Core Fiber Amplifier [J].
Dolfi-Bouteyre, Agnes ;
Canat, Guillaume ;
Valla, Matthieu ;
Augere, Beatrice ;
Besson, Claudine ;
Goular, Didier ;
Lombard, Laurent ;
Cariou, Jean-Pierre ;
Durecu, Anne ;
Fleury, Didier ;
Bricteux, Laurent ;
Brousmiche, Sebastien ;
Lugan, Sebastien ;
Macq, Benoit .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (02) :441-450
[5]  
Koch G. J., 2007, Opt. Eng., V46
[6]  
Köpp F, 2004, J ATMOS OCEAN TECH, V21, P194, DOI 10.1175/1520-0426(2004)021<0194:COAWVB>2.0.CO
[7]  
2
[8]   Theory of the double-edge technique for Doppler lidar wind measurement [J].
Korb, CL ;
Gentry, BM ;
Li, SX ;
Flesia, C .
APPLIED OPTICS, 1998, 37 (15) :3097-3104
[9]   Superconducting nanowire single-photon detectors: physics and applications [J].
Natarajan, Chandra M. ;
Tanner, Michael G. ;
Hadfield, Robert H. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2012, 25 (06)
[10]   The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part I: Instrument Design and Comparison to Satellite Instrument [J].
Reitebuch, Oliver ;
Lemmerz, Christian ;
Nagel, Engelbert ;
Paffrath, Ulrike ;
Durand, Yannig ;
Endemann, Martin ;
Fabre, Frederic ;
Chaloupy, Marc .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2009, 26 (12) :2501-2515