A DEEP LEARNING ARCHITECTURE TO DETECT EVENTS IN EEG SIGNALS DURING SLEEP

被引:0
作者
Chambon, Stanislas [1 ,2 ,3 ]
Thorey, Valentin [2 ]
Arnal, Pierrick J. [2 ]
Mignot, Emmanuel [1 ]
Gramfort, Alexandre [3 ,4 ,5 ]
机构
[1] Stanford Univ, Ctr Sleep Sci & Med, Stanford, CA 94305 USA
[2] Dreem, Res & Algorithms Team, Paris, France
[3] Univ Paris Saclay, LTCI Telecom ParisTech, Paris, France
[4] Univ Paris Saclay, INRIA, Paris, France
[5] Univ Paris Saclay, CEA Neurospin, Paris, France
来源
2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2018年
关键词
Deep learning; EEG; event detection; sleep; EEG-patterns; time series; SPINDLES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) during sleep is used by clinicians to evaluate various neurological disorders. In sleep medicine, it is relevant to detect macro-events (>= 10 s) such as sleep stages, and micro-events (<= 2 s) such as spindles and K-complexes. Annotations of such events require a trained sleep expert, a time consuming and tedious process with a large inter-scorer variability. Automatic algorithms have been developed to detect various types of events but these are event-specific. We propose a deep learning method that jointly predicts locations, durations and types of events in EEG time series. It relies on a convolutional neural network that builds a feature representation from raw EEG signals. Numerical experiments demonstrate efficiency of this new approach on various event detection tasks compared to current state-of-the-art, event specific, algorithms.
引用
收藏
页数:6
相关论文
共 25 条
[11]   Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease [J].
Musiek, Erik S. ;
Xiong, David D. ;
Holtzman, David M. .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2015, 47 :e148-e148
[12]  
Nair V, 2010, ICML, DOI DOI 10.5555/3104322.3104425
[13]   Regional Slow Waves and Spindles in Human Sleep [J].
Nir, Yuval ;
Staba, Richard J. ;
Andrillon, Thomas ;
Vyazovskiy, Vladyslav V. ;
Cirelli, Chiara ;
Fried, Itzhak ;
Tononi, Giulio .
NEURON, 2011, 70 (01) :153-169
[14]   Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research [J].
O'Reilly, Christian ;
Gosselin, Nadia ;
Carrier, Julie ;
Nielsen, Tore .
JOURNAL OF SLEEP RESEARCH, 2014, 23 (06) :628-635
[15]   Multichannel sleep spindle detection using sparse low-rank optimization [J].
Parekh, Ankit ;
Selesnick, Ivan W. ;
Osorio, Ricardo S. ;
Varga, Andrew W. ;
Rapoport, David M. ;
Ayappa, Indu .
JOURNAL OF NEUROSCIENCE METHODS, 2017, 288 :1-16
[16]   Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization [J].
Parekh, Ankit ;
Selesnick, Ivan W. ;
Rapoport, David M. ;
Ayappa, Indu .
JOURNAL OF NEUROSCIENCE METHODS, 2015, 251 :37-46
[17]  
Paszke A., 2017, PyTorch
[18]   Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource [J].
Purcell, S. M. ;
Manoach, D. S. ;
Demanuele, C. ;
Cade, B. E. ;
Mariani, S. ;
Cox, R. ;
Panagiotaropoulou, G. ;
Saxena, R. ;
Pan, J. Q. ;
Smoller, J. W. ;
Redline, S. ;
Stickgold, R. .
NATURE COMMUNICATIONS, 2017, 8
[19]   Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization [J].
Ray, Laura B. ;
Sockeel, Stephane ;
Soon, Melissa ;
Bore, Arnaud ;
Myhr, Ayako ;
Stojanoski, Bobby ;
Cusack, Rhodri ;
Owen, Adrian M. ;
Doyon, Julien ;
Fogel, Stuart M. .
FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
[20]  
REDMON J, 2016, PROC CVPR IEEE, P779, DOI [DOI 10.1109/CVPR.2016.91, 10.1109/CVPR.2016.91]