Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples

被引:0
作者
Weiss, Gail [1 ]
Goldberg, Yoav [2 ]
Yahav, Eran [1 ]
机构
[1] Technion, Haifa, Israel
[2] Bar Ilan Univ, Ramat Gan, Israel
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80 | 2018年 / 80卷
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel algorithm that uses exact learning and abstraction to extract a deterministic finite automaton describing the state dynamics of a given trained RNN. We do this using Angluin's L* algorithm as a learner and the trained RNN as an oracle. Our technique efficiently extracts accurate automata from trained RNNs, even when the state vectors are large and require fine differentiation.
引用
收藏
页数:10
相关论文
共 20 条
[1]   LEARNING REGULAR SETS FROM QUERIES AND COUNTEREXAMPLES [J].
ANGLUIN, D .
INFORMATION AND COMPUTATION, 1987, 75 (02) :87-106
[2]  
[Anonymous], 2017, CoRR
[3]  
[Anonymous], 1997, Neural Computation
[4]  
Antiga L., 2017, P NIPS
[5]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[6]  
Cechin AL, 2003, SCCC 2003: XXIII INTERNATIONAL CONFERENCE OF THE CHILEAN COMPUTER SCIENCE SOCIETY, PROCEEDINGS, P73
[7]  
Cho K., 2014, ARXIV, DOI 10.3115/v1/w14-4012
[8]  
Chung J., 2014, ARXIV
[9]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[10]  
Giles C. L., 1990, ADV NEURAL INFORM PR, p380{387