Efficient parallel implementation of Bose Hubbard model: Exact numerica ground states and dynamics of gaseous Bose-Einstein condensates

被引:4
作者
Leung, Mary Ann E. [1 ]
Reinhardt, William P. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
parallelization; Bose Hubbard model; Bose-Einstein condensate; imaginary time propagation; linear scaling; large sparse linear systems; parallel algorithm; quantum dynamics;
D O I
10.1016/j.cpc.2007.04.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a parallel implementation of the Bose Hubbard model, using imaginary time propagation to find the lowest quantum eigenstate and real time propagation for simulation of quantum dynamics. Scaling issues, performance of sparse matrix-vector multiplication, and a parallel algorithm for determining nonzero matrix elements are described. Implementation of imaginary time propagation yields an O(N) linear convergence on a single processor and slightly better than ideal performance on up to 160 processors for a particular problem size. The determination of the nonzero matrix elements is intractable using sequential non-optimized techniques for large problem sizes. Thus, we discuss a parallel algorithm that takes advantage of the intrinsic structural characteristics of the Fock-space matrix representation of the Bose Hubbard Hamiltonian a utilizes a parallel implementation of a Fock state look up table to make this task solvable within reasonable timeframes. Our parallel algorithm demonstrates near ideal scaling on thousand of processors. We include results for a matrix 22.6 million square, with 202 million nonzero elements utilizing 2048 processors. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:348 / 356
页数:9
相关论文
共 60 条
[1]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[2]   Quantum many particle systems in ring-shaped optical lattices [J].
Amico, L ;
Osterloh, A ;
Cataliotti, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]  
[Anonymous], 2003, Journal of Optics B: Quantum and Semiclassical Optics, DOI DOI 10.1088/1464-4266/5/2/352
[5]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[6]  
BALAY S, 2004, ANL9511
[7]  
Balay S., 2001, PETSC
[8]   Mott domains of bosons confined on optical lattices [J].
Batrouni, GG ;
Rousseau, V ;
Scalettar, RT ;
Rigol, M ;
Muramatsu, A ;
Denteneer, PJH ;
Troyer, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (11)
[9]   QUANTUM CRITICAL PHENOMENA IN ONE-DIMENSIONAL BOSE SYSTEMS [J].
BATROUNI, GG ;
SCALETTAR, RT ;
ZIMANYI, GT .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1765-1768
[10]   Bose-Einstein condensates in rotating lattices - art. no. 060405 [J].
Bhat, R ;
Holland, MJ ;
Carr, LD .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)