Novel preparation of self-assembled HCl-doped polyaniline nanotubes using compressed CO2-assisted polymerization

被引:14
作者
Noby, H. [1 ]
El-Shazly, A. H. [2 ,3 ]
Elkady, M. F. [2 ,4 ]
Ohshima, M. [5 ]
机构
[1] Aswan Univ, Fac Energy Engn, Mat Engn & Design, Aswan, Egypt
[2] Egypt Japan Univ Sci & Technol, Chem & Petrochem Engn Dept, Alexandria, Egypt
[3] Alexandria Univ, Fac Engn, Chem Engn Dept, Alexandria, Egypt
[4] City Sci Res & Technol Applicat, ATNMRI, Fabricat Technol Dept, Alexandria, Egypt
[5] Kyoto Univ, Chem Engn Dept, Kyoto, Japan
关键词
Polyaniline nanotubes; CO2-supported polymerization; HCl-doped; and self-assembled; THERMOELECTRIC PROPERTIES; SUPERCRITICAL CO2; ANILINE; NANOCOMPOSITES; PERFORMANCE; ADSORPTION; PROTECTION; NANOSHEETS; EVOLUTION; OXIDATION;
D O I
10.1016/j.polymer.2018.09.060
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Recently, extraordinary attention has been given to the preparation of strong acid-doped polyaniline in distinct morphologies, such as nanofibers, nanotubes, and nanoflowers, while seeking proper and cheap energy polymeric materials. This work introduces the CO2-supported polymerization process as an advanced and novel polymerization technique to prepare rectangular cross-sectional self-assembled HCl-doped polyaniline nanotubes (HCl-PANNT) without the need to use any surfactants for the first time. Based on the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results, a rectangular cross-sectional HCl-PANNT with an average outer diameter and wall thickness of 110 and 35 nm, respectively, was prepared. Furthermore, X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were employed to reveal the crystallinity and the chemical structure of the prepared polyaniline, respectively. Accordingly, the produced PANNT has a partial crystalline structure and emeraldine salt form. Moreover, the produced HCl-PANNT showed a high electrical conductivity of 1.5 S/cm.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 31 条
  • [1] Evaluating protection performance of zinc rich epoxy paints modified with polyaniline and polyaniline-clay nanocomposite
    Akbarinezhad, E.
    Ebrahimi, M.
    Sharif, F.
    Ghanbarzadeh, A.
    [J]. PROGRESS IN ORGANIC COATINGS, 2014, 77 (08) : 1299 - 1308
  • [2] Synthesis of exfoliated polyaniline-clay nanocomposite in supercritical CO2
    Akbarinezhad, E.
    Ebrahimi, M.
    Sharif, F.
    [J]. JOURNAL OF SUPERCRITICAL FLUIDS, 2011, 59 : 124 - 130
  • [3] Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method
    Almasi, M. J.
    Sheikholeslami, T. Fanaei
    Naghdi, M. R.
    [J]. COMPOSITES PART B-ENGINEERING, 2016, 96 : 63 - 68
  • [4] Preparation, characterization and thermoelectricity of ATT/TiO2/PANI nano-composites doped with different acids
    Chen, Lulu
    Zhai, Yun
    Ding, Hongyan
    Zhou, Guanghong
    Zhu, Yufu
    Hui, David
    [J]. COMPOSITES PART B-ENGINEERING, 2013, 45 (01) : 111 - 116
  • [5] Chemical oxidative polymerization of anilinium sulfate versus aniline:: Theory and experiment
    Ciric-Marjanovic, Gordana
    Konyushenko, Elena N.
    Trchova, Miroslava
    Stejskal, Jaroslav
    [J]. SYNTHETIC METALS, 2008, 158 (05) : 200 - 211
  • [6] Polyaniline microtubes synthesized via supercritical CO2 and aqueous interfacial polymerization
    Du, JM
    Zhang, JL
    Han, BX
    Liu, ZM
    Wan, MX
    [J]. SYNTHETIC METALS, 2005, 155 (03) : 523 - 526
  • [7] Copper Chromite-Polyaniline Nanocomposite: An Advanced Electrode Material for High Performance Energy Storage
    Gandla, Dayakar
    Sarkar, Suprabhat
    Ghanti, Epsita
    Ghosh, Sutapa
    [J]. ELECTROCHIMICA ACTA, 2017, 248 : 486 - 495
  • [8] Polyaniline Nanotube-ZnO Composite Materials: Facile Synthesis and Application
    Gao Fang
    Cheng Yang
    An Liang
    Tan Ruiqin
    Li Xiaomin
    Wang Guanghui
    [J]. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2015, 30 (06): : 1147 - 1151
  • [9] Acid doping of polyaniline: Spectroscopic and electrochemical studies
    Hatchett, DW
    Josowicz, M
    Janata, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (50) : 10992 - 10998
  • [10] Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors
    Htut, K. Zin
    Kim, Minjae
    Lee, Eunsoo
    Lee, Gibaek
    Baeck, Sung Hyeon
    Shim, Sang Eun
    [J]. SYNTHETIC METALS, 2017, 227 : 61 - 70