Grothendieck-type subsets of Banach lattices

被引:13
作者
Galindo, Pablo [1 ]
Miranda, Vinicius C. C. [2 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia, Spain
[2] Univ Sao Paulo, Sao Paulo, Brazil
关键词
Almost Grothendieck sets; Almost Grothendieck operators; Disjoint operators; Positive Grothendieck property; Positive Grothendieck sets; Weak Grothendieck property; PROPERTY; SETS;
D O I
10.1016/j.jmaa.2021.125570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the setting of Banach lattices the weak (resp. positive) Grothendieck spaces have been defined. We localize such notions by defining new classes of sets that we study and compare with some quite related different classes. This allows us to introduce and compare the corresponding linear operators. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 20 条
[11]  
Loane J., 2007, THESIS NATL U IRELAN
[12]  
Lourenco M.L, ARXIV201109319
[13]  
Lourenco M.L., ARXIV201102890
[14]   A note on weak almost limited operators [J].
Machrafi, Nabil ;
El Fahri, Kamal ;
Moussa, Mohammed ;
Altin, Birol .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (03) :759-770
[15]  
Meyer-Nieberg P., 1991, Banach Lattices
[16]  
Rudin Walter, 1991, Functional analysis
[17]  
Sanchez J.A, 1985, Operators on Banach Lattices (Spanish)
[18]   Polynomial versions of almost Dunford-Pettis sets and almost limited sets in Banach lattices [J].
Shi, Zhongrui ;
Wang, Yu ;
Bu, Qingying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
[19]   Polynomial versions of weak Dunford-Pettis properties in Banach lattices [J].
Wang, Yu ;
Shi, Zhongrui ;
Bu, Qingying .
POSITIVITY, 2021, 25 (05) :1685-1698
[20]   On the dual positive Schur property in Banach lattices [J].
Wnuk, Witold .
POSITIVITY, 2013, 17 (03) :759-773