Grothendieck-type subsets of Banach lattices

被引:13
作者
Galindo, Pablo [1 ]
Miranda, Vinicius C. C. [2 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia, Spain
[2] Univ Sao Paulo, Sao Paulo, Brazil
关键词
Almost Grothendieck sets; Almost Grothendieck operators; Disjoint operators; Positive Grothendieck property; Positive Grothendieck sets; Weak Grothendieck property; PROPERTY; SETS;
D O I
10.1016/j.jmaa.2021.125570
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the setting of Banach lattices the weak (resp. positive) Grothendieck spaces have been defined. We localize such notions by defining new classes of sets that we study and compare with some quite related different classes. This allows us to introduce and compare the corresponding linear operators. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 20 条
[1]  
Aliprantis C. D., 2006, POSITIVE OPERATORS
[2]   Almost Dunford-Pettis sets in Banach lattices [J].
Bouras, Khalid .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2013, 62 (02) :227-236
[3]   LIMITED OPERATORS AND STRICT COSINGULARITY [J].
BOURGAIN, J ;
DIESTEL, J .
MATHEMATISCHE NACHRICHTEN, 1984, 119 :55-58
[4]   Polynomials on Banach lattices and positive tensor products [J].
Bu, Qingying ;
Buskes, Gerard .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) :845-862
[5]   Almost limited sets in Banach lattices [J].
Chen, Jin Xi ;
Chen, Zi Li ;
Ji, Guo Xing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :547-553
[6]   A THEOREM ON POLYNOMIAL-STAR APPROXIMATION [J].
DAVIE, AM ;
GAMELIN, TW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (02) :351-356
[7]   Some characterizations of almost limited operators [J].
Elbour, Aziz .
POSITIVITY, 2017, 21 (03) :865-874
[8]  
Fabian M, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-7515-7
[9]  
Ghenciu I, 2017, COMMENT MATH UNIV CA, V58, P35, DOI 10.14712/1213-7243.2015.195
[10]  
Gonzalez M., 1995, GLASGOW MATH J