Shortcut Model for Batch Preferential Crystallization Coupled with Racemization for Conglomerate-Forming Chiral Systems

被引:4
作者
Bhandari, Shashank [1 ]
Carneiro, Thiane [1 ]
Lorenz, Heike [1 ]
Seidel-Morgenstern, Andreas [1 ,2 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
[2] Otto von Guericke Univ, D-39106 Magdeburg, Germany
关键词
MOVING-BED CHROMATOGRAPHY; RESOLUTION; DERACEMIZATION; IMMOBILIZATION; TRANSFORMATION; ENANTIOMERS; SEPARATION;
D O I
10.1021/acs.cgd.1c01473
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Kinetically controlled preferential crystallization (PC) is a well-established elegant concept to separate mixtures of enantiomers of conglomerate-forming systems. Based on a smaller number of laboratory investigations, the key parameters of an available shortcut model (SCM) can be estimated, allowing for a rapid and reliable process design. This paper addresses a severe limitation of the method, namely, the limitation of the yield to 50%. In order to exploit the valuable counter enantiomer, the crystallization process is studied, coupled with a racemization reaction and a recycling step. It will be shown that the process integration can be performed in various ways. To quantify the different options in a unified manner and to provide a more general design concept, the SCM of PC is extended to include a kinetic model for the enzymatically catalyzed reaction. For illustration, model parameters are used, which characterize the resolution of the enantiomers of asparagine monohydrate and the racemization rate using an amino acid racemase. The theoretical study highlights the importance of exploiting the best stop time for batch operations in order to achieve the highest process productivity.
引用
收藏
页码:4094 / 4104
页数:11
相关论文
共 48 条
[11]   Simultaneous preferential crystallization in a coupled, batch operation mode - Part 1: Theoretical analysis and optimization [J].
Elsner, Martin Peter ;
Ziornek, Grzegorz ;
Seidel-Morgenstern, Andreas .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (17) :4760-4769
[12]   Efficient Separation of Enantiomers by Preferential Crystallization in Two Coupled Vessels [J].
Elsner, Martin Peter ;
Ziomek, Grzegorz ;
Seidel-Morgenstern, Andreas .
AICHE JOURNAL, 2009, 55 (03) :640-649
[13]   Continuous Preferential Crystallization of Chiral Molecules in Single and Coupled Mixed-Suspension Mixed-Product-Removal Crystallizers [J].
Galan, Kamila ;
Eicke, Matthias J. ;
Elsner, Martin P. ;
Lorenz, Heike ;
Seidel-Morgenstern, Andreas .
CRYSTAL GROWTH & DESIGN, 2015, 15 (04) :1808-1818
[14]  
Gansch J, CHEM ENG J, P422
[15]  
Harriehausen I, CATALYSTS, P726
[16]   Temperature Cycling Induced Deracemization of DL-Asparagine Monohydrate with Immobilized Amino Acid Racemase [J].
Intaraboonrod, Kritsada ;
Harriehausen, Isabel ;
Carneiro, Thiane ;
Seidel-Morgenstern, Andreas ;
Lorenz, Heike ;
Flood, Adrian E. .
CRYSTAL GROWTH & DESIGN, 2021, 21 (01) :306-313
[17]   Temperature cycle induced deracemization [J].
Intaraboonrod, Kritsada ;
Lerdwiriyanupap, Tharit ;
Hoquante, Marine ;
Coquerel, Gerard ;
Flood, Adrian E. .
MENDELEEV COMMUNICATIONS, 2020, 30 (04) :395-405
[18]   Attrition-Enhanced Deracemization of Axially Chiral Nicotinamides [J].
Ishikawa, Hiroki ;
Ban, Kazuma ;
Uemura, Naohiro ;
Yoshida, Yasushi ;
Mino, Takashi ;
Kasashima, Yoshio ;
Sakamoto, Masami .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2020, 2020 (08) :1001-1005
[19]  
Jacques J., 1994, ENANTIOMERS RACEMATE
[20]   Simulated moving-bed chromatography and its application to chirotechnology [J].
Juza, M ;
Mazzotti, M ;
Morbidelli, M .
TRENDS IN BIOTECHNOLOGY, 2000, 18 (03) :108-118