Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer

被引:59
作者
Wu, Jianghua [1 ,2 ,3 ,4 ]
Liu, Changling [5 ]
Liu, Xiaoqing [5 ]
Sun, Wei [1 ]
Li, Linfeng [5 ]
Gao, Nannan [5 ]
Zhang, Yajun [5 ]
Yang, Xin [1 ]
Zhang, Junjie [5 ]
Wang, Haiyue [1 ]
Liu, Xinying [1 ]
Huang, Xiaozheng [1 ]
Zhang, Yanhui [2 ,3 ,4 ]
Cheng, Runfen [2 ,3 ,4 ]
Chi, Kaiwen [1 ]
Mao, Luning [1 ]
Zhou, Lixin [1 ]
Lin, Dongmei [1 ]
Ling, Shaoping [5 ]
机构
[1] Peking Univ Canc Hosp & Inst, Dept Pathol, Key Lab Carcinogenesis & Translat Res, Minist Educ, Beijing, Peoples R China
[2] Tianjin Med Univ Canc Inst & Hosp, Dept Pathol, Natl Clin Res Ctr Canc, Tianjin, Peoples R China
[3] Key Lab Canc Prevent & Therapy, Tianjin, Peoples R China
[4] Clin Res Ctr Canc, Tianjin, Peoples R China
[5] Genome Wisdom Inc, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
WHOLE SLIDE IMAGES; DIGITAL PATHOLOGY; IMMUNOHISTOCHEMISTRY; REPRODUCIBILITY; CLASSIFICATION; BIOMARKER;
D O I
10.1038/s41379-021-00904-9
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Standardized programmed death-ligand 1 (PD-L1) assessment in non-small cell lung cancer (NSCLC) is challenging, owing to inter-observer variability among pathologists and the use of different antibodies. There is a strong demand for the development of an artificial intelligence (AI) system to obtain high-precision scores of PD-L1 expression in clinical diagnostic scenarios. We developed an AI system using whole slide images (WSIs) of the 22c3 assay to automatically assess the tumor proportion score (TPS) of PD-L1 expression based on a deep learning (DL) model of tumor detection. Tests were performed to show the diagnostic ability of the AI system in the 22c3 assay to assist pathologists and the reliability of the application in the SP263 assay. A robust high-performance DL model for automated tumor detection was devised with an accuracy and specificity of 0.9326 and 0.9641, respectively, and a concrete TPS value was obtained after tumor cell segmentation. The TPS comparison test in the 22c3 assay showed strong consistency between the TPS calculated with the AI system and trained pathologists (R = 0.9429-0.9458). AI-assisted diagnosis test confirmed that the repeatability and efficiency of untrained pathologists could be improved using the AI system. The Ventana PD-L1 (SP263) assay showed high consistency in TPS calculations between the AI system and pathologists (R = 0.9787). In conclusion, a high-precision AI system is proposed for the automated TPS assessment of PD-L1 expression in the 22c3 and SP263 assays in NSCLC. Our study also indicates the benefits of using an AI-assisted system to improve diagnostic repeatability and efficiency for pathologists.
引用
收藏
页码:403 / 411
页数:9
相关论文
共 34 条
[1]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[3]   The "cancer immunogram" [J].
Blank, Christian U. ;
Haanen, John B. ;
Ribas, Antoni ;
Schumacher, Ton N. .
SCIENCE, 2016, 352 (6286) :658-660
[4]   PD-L1 immunohistochemistry in clinical diagnostics of lung cancer: inter-pathologist variability is higher than assay variability [J].
Brunnstrom, Hans ;
Johansson, Anna ;
Westbom-Fremer, Sofia ;
Backman, Max ;
Djureinovic, Dijana ;
Patthey, Annika ;
Isaksson-Mettvainio, Martin ;
Gulyas, Miklos ;
Micke, Patrick .
MODERN PATHOLOGY, 2017, 30 (10) :1411-1421
[5]  
Chang S, 2019, J PATHOL TRANSL MED, V53, P347
[6]   Intra- and Interobserver Reproducibility Assessment of PD-L1 Biomarker in Non-Small Cell Lung Cancer [J].
Cooper, Wendy A. ;
Russell, Prudence A. ;
Cherian, Maya ;
Duhig, Edwina E. ;
Godbolt, David ;
Jessup, Peter J. ;
Khoo, Christine ;
Leslie, Connull ;
Mahar, Annabelle ;
Moffat, David F. ;
Sivasubramaniam, Vanathi ;
Faure, Celine ;
Reznichenko, Alena ;
Grattan, Amanda ;
Fox, Stephen B. .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4569-4577
[7]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[8]   Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer [J].
Garon, Edward B. ;
Rizvi, Naiyer A. ;
Hui, Rina ;
Leighl, Natasha ;
Balmanoukian, Ani S. ;
Eder, Joseph Paul ;
Patnaik, Amita ;
Aggarwal, Charu ;
Gubens, Matthew ;
Horn, Leora ;
Carcereny, Enric ;
Ahn, Myung-Ju ;
Felip, Enriqueta ;
Lee, Jong-Seok ;
Hellmann, Matthew D. ;
Hamid, Omid ;
Goldman, Jonathan W. ;
Soria, Jean-Charles ;
Dolled-Filhart, Marisa ;
Rutledge, Ruth Z. ;
Zhang, Jin ;
Lunceford, Jared K. ;
Rangwala, Reshma ;
Lubiniecki, Gregory M. ;
Roach, Charlotte ;
Emancipator, Kenneth ;
Gandhi, Leena .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (21) :2018-2028
[9]   Digital pathology and image analysis in tissue biomarker research [J].
Hamilton, Peter W. ;
Bankhead, Peter ;
Wang, Yinhai ;
Hutchinson, Ryan ;
Kieran, Declan ;
McArt, Darragh G. ;
James, Jacqueline ;
Salto-Tellez, Manuel .
METHODS, 2014, 70 (01) :59-73
[10]   PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project [J].
Hirsch, Fred R. ;
McElhinny, Abigail ;
Stanforth, Dave ;
Ranger-Moore, James ;
Jansson, Malinka ;
Kulangara, Karina ;
Richardson, William ;
Towne, Penny ;
Hanks, Debra ;
Vennapusa, Bharathi ;
Mistry, Amita ;
Kalamegham, Rasika ;
Averbuch, Steve ;
Novotny, James ;
Rubin, Eric ;
Emancipator, Kenneth ;
McCaffery, Ian ;
Williams, J. Andrew ;
Walker, Jill ;
Longshore, John ;
Tsao, Ming Sound ;
Kerr, Keith M. .
JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (02) :208-222