Adaptive total variation L1 regularization for salt and pepper image denoising

被引:57
作者
Dang Ngoc Hoang Thanh [1 ]
Le Thi Thanh [2 ]
Nguyen Ngoc Hien [3 ]
Prasath, Surya [4 ,5 ,6 ,7 ]
机构
[1] Univ Econ Ho Chi Minh City, Sch Business Informat Technol, Dept Informat Syst, Ho Chi Minh City 70000, VN, Vietnam
[2] Ho Chi Minh City Univ Transport, Dept Basic Sci, Ho Chi Minh City 700000, VN, Vietnam
[3] Dong Thap Univ, Ctr Occupat Skills Dev, Dong Thap 870000, VN, Vietnam
[4] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45221 USA
[6] Univ Cincinnati, Coll Med, Dept Biomed Informat, Cincinnati, OH 45267 USA
[7] Univ Cincinnati, Dept Elect Engn & Comp Sci, Cincinnati, OH 45221 USA
来源
OPTIK | 2020年 / 208卷
关键词
Image denoising; Salt and pepper noise; Total variation; Image restoration; Primal dual gradient; Adaptive image denoising; Image quality assessment;
D O I
10.1016/j.ijleo.2019.163677
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this article, we propose an adaptive total variation (TV) regularization model for salt and pepper denoising in digital images. The adaptive TV denoising method is developed based on the general regularized image restoration model with L1 fidelity for handling salt and pepper noise model. An estimation for regularization parameter is also proposed based on the characteristics of the salt and pepper noise. We implement the proposed adaptive TV-L1 regularization model efficiently for image denoising using the primal dual gradient method. In the experiments, the full-reference image quality assessment metrics are used for evaluating denoising quality across various noise levels in different synthetic and real images. The denoising results are compared to other similar salt and pepper image denoising methods and our results indicate we obtain artifact free edge preserving restorations.
引用
收藏
页数:10
相关论文
共 40 条
  • [21] Lim J.S., 1990, Two-Dimensional Signal and Image Processing, VVolume 710
  • [22] Implementation of high-order variational models made easy for image processing
    Lu, Wenqi
    Duan, Jinming
    Qiu, Zhaowen
    Pan, Zhenkuan
    Liu, Ryan Wen
    Bai, Li
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4208 - 4233
  • [23] Co-occurrence of adjacent sparse local ternary patterns: A feature descriptor for texture and face image retrieval
    Naghashi, Vahid
    [J]. OPTIK, 2018, 157 : 877 - 889
  • [24] Structure tensor adaptive total variation for image restoration
    Prasath, Surya
    Dang Ngoc Hoang Thanh
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2019, 27 (02) : 1147 - 1156
  • [25] Prasath VBS, 2018, 2018 IEEE SEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (IEEE ICCE 2018), P278, DOI 10.1109/CCE.2018.8465720
  • [26] Prasath VBS, 2018, 2018 IEEE SEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRONICS (IEEE ICCE 2018), P267, DOI 10.1109/CCE.2018.8465764
  • [27] Multiscale Tikhonov-Total Variation Image Restoration Using Spatially Varying Edge Coherence Exponent
    Prasath, V. B. Surya
    Vorotnikov, Dmitry
    Pelapur, Rengarajan
    Jose, Shani
    Seetharaman, Guna
    Palaniappan, Kannappan
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) : 5220 - 5235
  • [28] Prasath VBS, 2017, 8 INT S INF COMM TEC, P378, DOI [10.1145/3155133.3155191, DOI 10.1145/3155133.3155191]
  • [29] Variational Image Regularization with Euler's Elastica Using a Discrete Gradient Scheme
    Ringholmt, Torbjorn
    Lazic, Jasmina
    Schonlieb, Carola-Bibiane
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2665 - 2691
  • [30] Rojas R, 2011, EUR SIGNAL PR CONF, P278