Accurate boundary treatment for time-dependent 3D Schrodinger equation under Spherical coordinates

被引:1
|
作者
Zhang, Linfeng [1 ,2 ]
Jia, Hongfei [1 ]
Bian, Lei [1 ,3 ]
Ran, Bin [2 ]
机构
[1] Jilin Univ, Sch Transportat, Changchun 130012, Peoples R China
[2] Univ Wisconsin, 1212 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA
[3] Travelsky Mobile Technol Ltd, Beijing 100087, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2020年 / 31卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Three-dimensional Schrodinger equation; spherical coordinates; boundary conditions; NUMERICAL-SOLUTION; TRANSPARENT; SCHEMES;
D O I
10.1142/S0129183120500151
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a novel local boundary condition for three-dimensional Schrodinger equation under spherical coordinates. It is based on the approximate linear relationship among the Bessel functions from a free one-dimensional Schrodinger equation. With a variable transform, the novel boundary condition is a simple form of some ordinary differential equations, which relate the grid point near the numerical boundaries. Numerical tests and comparisons demonstrate the effectiveness of the proposed boundary conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Exact boundary conditions at finite distance for the time-dependent Schrodinger equation
    Mangin-Brinet, M.
    Carbonell, J.
    Gignoux, C.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1998, 57 (05):
  • [22] A TIME-DEPENDENT SCHRODINGER-EQUATION
    KRANOLD, HU
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (09) : 2345 - 2347
  • [23] On the derivation of the time-dependent equation of Schrodinger
    Briggs, JS
    Rost, JM
    FOUNDATIONS OF PHYSICS, 2001, 31 (04) : 693 - 712
  • [24] On the time-dependent solutions of the Schrodinger equation
    Palma, Alejandro
    Pedraza, I.
    TOPICS IN THE THEORY OF CHEMICAL AND PHYSICAL SYSTEMS, 2007, 16 : 147 - +
  • [25] Analysis of solutions of time-dependent Schrodinger equation of a particle trapped in a spherical box
    Nath, Debraj
    Carbo-Dorca, Ramon
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (06) : 1089 - 1106
  • [26] A TREATMENT OF TIME-DEPENDENT PROBLEMS BY A GENERALIZED SCHRODINGER-EQUATION
    VENANZI, TJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (01): : 23 - 23
  • [27] On the Numerical Solution of the Time-Dependent Schrodinger Equation with Time-Dependent Potentials
    Rizea, M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 1011 - 1015
  • [28] The time-dependent Schrodinger equation in three dimensions under geometric constraints
    Petreska, Irina
    de Castro, Antonio S. M.
    Sandev, Trifce
    Lenzi, Ervin K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [29] Generalized time-dependent Schrodinger equation in two dimensions under constraints
    Sandev, Trifce
    Petreska, Irina
    Lenzi, Ervin K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
  • [30] Time-Dependent Source Identification Problem for the Schrodinger Equation with Nonlocal Boundary Conditions
    Ashyralyev, Allaberen
    Urun, Mesut
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183