Accurate boundary treatment for time-dependent 3D Schrodinger equation under Spherical coordinates

被引:1
|
作者
Zhang, Linfeng [1 ,2 ]
Jia, Hongfei [1 ]
Bian, Lei [1 ,3 ]
Ran, Bin [2 ]
机构
[1] Jilin Univ, Sch Transportat, Changchun 130012, Peoples R China
[2] Univ Wisconsin, 1212 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA
[3] Travelsky Mobile Technol Ltd, Beijing 100087, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2020年 / 31卷 / 01期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Three-dimensional Schrodinger equation; spherical coordinates; boundary conditions; NUMERICAL-SOLUTION; TRANSPARENT; SCHEMES;
D O I
10.1142/S0129183120500151
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a novel local boundary condition for three-dimensional Schrodinger equation under spherical coordinates. It is based on the approximate linear relationship among the Bessel functions from a free one-dimensional Schrodinger equation. With a variable transform, the novel boundary condition is a simple form of some ordinary differential equations, which relate the grid point near the numerical boundaries. Numerical tests and comparisons demonstrate the effectiveness of the proposed boundary conditions.
引用
收藏
页数:13
相关论文
共 50 条