On Distance Properties of Quasi-Cyclic Protograph-Based LDPC Codes

被引:8
作者
Butler, Brian K. [1 ]
Siegel, Paul H. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
来源
2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY | 2010年
关键词
D O I
10.1109/ISIT.2010.5513638
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent work [1][2] has shown that properly designed protograph-based LDPC codes may have minimum distance linearly increasing with block length. This notion rests on ensemble arguments over all possible expansions of the base protograph. When implementation complexity is considered, the expansion is typically chosen to be quite orderly. For example, protograph expansion by cyclically shifting connections creates a quasi-cyclic ( QC) code. Other recent work [3] has provided upper bounds on the minimum distance of QC codes. In this paper, these bounds are expanded upon to cover puncturing and tightened in several specific cases. We then evaluate our upper bounds for the most prominent protograph code thus far, one proposed for deep-space usage in the CCSDS experimental standard [4], the code known as AR4JA.
引用
收藏
页码:809 / 813
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 2003, 42154 JPL INP
[2]  
[Anonymous], 2007, 1311O2 CCSDS
[3]  
[Anonymous], 1963, Low-Density Parity-Check Codes
[4]  
Divsalar D., 2006, P IEEE INT S INF THE
[5]   Capacity-Approaching Protograph Codes [J].
Divsalar, Dariush ;
Dolinar, Sam ;
Jones, Christopher R. ;
Andrews, Kenneth .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2009, 27 (06) :876-888
[6]  
Richardson T., 2004, MULTI EDGE TYPE LDPC, DOI 10.1.1.106.7310
[7]  
Richardson T. J., 2003, P 41 ANN ALL C COMM, P1426
[8]  
Smarandache R., 2009, IEEE T INF THE UNPUB
[9]  
SWEATLOCK SL, 2008, THESIS CALIF I TECH
[10]   Selective avoidance of cycles in irregular LDPC code construction [J].
Tian, T ;
Jones, CR ;
Villasenor, JD ;
Wesel, RD .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2004, 52 (08) :1242-1247