Universal methods for generating random variables with a given characteristic function

被引:13
作者
Barabesi, L. [1 ]
Pratelli, L. [2 ]
机构
[1] Univ Siena, Dipartimento Econ Polit & Stat, I-53100 Siena, Italy
[2] Accademia Navale, Grp Matemat, I-57121 Livorno, Italy
关键词
rejection method; characteristic function; inversion theorem; 60E10; 65C10; 65C60; LOG-CONCAVE DISTRIBUTIONS; REJECTION; DENSITY; RATIO;
D O I
10.1080/00949655.2014.892108
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Universal generators for absolutely-continuous and integer-valued random variables are introduced. The proposal is based on a generalization of the rejection technique proposed by Devroye [The computer generation of random variables with a given characteristic function. Computers and Mathematics with Applications. 1981;7:547-552]. The method involves a dominating function solely requiring the evaluation of integrals which depend on the characteristic function of the underlying random variable. The proposal gives rise to simple algorithms which may be implemented in a few code lines and which may show noticeable performance even if some classical families of distributions are considered.
引用
收藏
页码:1679 / 1691
页数:13
相关论文
共 31 条
[1]  
Ahrens J. H, 1991, FRONTIERS STAT COMPU, P137
[2]  
[Anonymous], APPL STAT
[3]  
Barabesi L, 2014, STAT COMPUT IN PRESS
[4]   INFINITE DIVISIBILITY OF HYPERBOLIC AND GENERALIZED INVERSE GAUSSIAN DISTRIBUTIONS [J].
BARNDORFFNIELSEN, O ;
HALGREEN, C .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 38 (04) :309-311
[5]   EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE [J].
BARNDORFFNIELSEN, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674) :401-419
[6]   Transformed density rejection with inflection points [J].
Botts, Carsten ;
Hormann, Wolfgang ;
Leydold, Josef .
STATISTICS AND COMPUTING, 2013, 23 (02) :251-260
[7]   A NOTE ON THE GENERATION OF RANDOM NORMAL DEVIATES [J].
BOX, GEP ;
MULLER, ME .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :610-611
[8]  
CHENG RCH, 1977, APPL STAT, V26, P71
[9]  
Dagpunar J. S., 2007, SIMULATION MONTE CAR
[10]   Random Variate Generation by Numerical Inversion when Only the Density Is Known [J].
Derflinger, Gerhard ;
Hormann, Wolfgang ;
Leydold, Josef .
ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2010, 20 (04)