On symmetric finsler spaces

被引:26
|
作者
Deng, Shaoqiang [1 ]
Hou, Zixin [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s11856-007-0095-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study symmetric Finsler spaces. We first study some geometric properties of globally symmetric Finsler spaces and prove that any such space can be written as a coset space of a Lie group with an invariant Finsler metric. Then we prove that a globally symmetric Finsler space is a Berwald space. As an application, we use the notion of Minkowski symmetric Lie algebras to give an algebraic description of symmetric Finsler spaces and obtain the formulas for flag curvature and Ricci scalar. Finally, some rigidity results of locally symmetric Finsler spaces related to the flag curvature are also given.
引用
收藏
页码:197 / 219
页数:23
相关论文
共 50 条