Experimental Testing of Rocking Cross-Laminated Timber Walls with Resilient Slip Friction Joints

被引:120
作者
Hashemi, Ashkan [1 ]
Zarnani, Pouyan [2 ]
Masoudnia, Reza [1 ]
Quenneville, Pierre [1 ,3 ]
机构
[1] Univ Auckland, Fac Engn, Dept Civil & Environm Engn, Private Bag 92019, Auckland 1142, New Zealand
[2] Auckland Univ Technol, Sch Engn Comp & Math Sci, Dept Built Environm Engn, Struct Engn, Private Bag 92006, Auckland 1142, New Zealand
[3] Univ Auckland, Fac Engn, Dept Civil & Environm Engn, Timber Design, Private Bag 92019, Auckland 1142, New Zealand
关键词
Rocking walls; Cross-laminated timber; Resilient slip friction (RSF) joints; Self-centering; Damage avoidance; Resilience; Shear key; Wood structures; SHEAR-WALL; PERFORMANCE; CONNECTORS; DESIGN;
D O I
10.1061/(ASCE)ST.1943-541X.0001931
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Allowing a wall to rock and uplift during a seismic event can cap the forces and minimize the postevent residual damage. Slip friction connections comprised of flat steel plates sliding over each other have been experimentally tested as the hold-down connectors in timber shear walls and performed well in terms of the hysteretic behavior and the energy dissipation rate. However, the main disadvantage of these joints is the undesirable residual displacements. In recognition of this fact, a novel type of friction joint called a resilient slip friction (RSF) joint is proposed. The innovative configuration of this joint provides the energy dissipation and self-centering behavior all in one compact package. This paper describes the large-scale experimental test conducted on a rocking cross-laminated timber (CLT) wall with RSF joints as the hold-down connectors. Additionally, a series of capacity equations are presented and validated by comparing the analytical results with the experimental data. The results confirmed that this technology has the potential to provide a robust solution for seismic-resilient structures.
引用
收藏
页数:16
相关论文
共 35 条
[1]   Rocking wall-frame structures with supplemental tendon systems [J].
Ajrab, JJ ;
Pekcan, G ;
Mander, JB .
JOURNAL OF STRUCTURAL ENGINEERING, 2004, 130 (06) :895-903
[2]  
[Anonymous], WORLD C TIMB ENG WCT
[3]  
[Anonymous], WORLD C EARTHQ ENG 1
[4]  
[Anonymous], 2011, CLT HDB CROSS LAMINA
[5]  
[Anonymous], 1999, TIMBER DESIGN GUIDE
[6]  
[Anonymous], SAP2000 VERS 17 COMP
[7]   SEISMIC TESTS ON A MODEL SHEAR WALL WITH FRICTION JOINTS [J].
BAKTASH, P ;
MARSH, C ;
PALL, A .
CANADIAN JOURNAL OF CIVIL ENGINEERING, 1983, 10 (01) :52-59
[8]   Development of a precast concrete shear-wall system requiring special code acceptance [J].
Bora, Can ;
Oliva, Michael G. ;
Nakaki, Suzanne Dow ;
Becker, Roger .
PCI JOURNAL, 2007, 52 (01) :122-+
[9]   SOFIE project-3D shaking table test on a seven-storey full-scale cross-laminated timber building [J].
Ceccotti, Ario ;
Sandhaas, Carmen ;
Okabe, Minoru ;
Yasumura, Motoi ;
Minowa, Chikahiro ;
Kawai, Naohito .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2013, 42 (13) :2003-2021
[10]  
Hashemi A., 2016, P NZ SOC EARTHQ ENG