Anisotropic Differences in the Thermal Conductivity of Rocks: A Summary from Core Measurement Data in East China

被引:8
作者
Wang, Yibo [1 ,2 ]
Wang, Zhuting [3 ]
Shi, Lin [4 ]
Rong, Yuwei [4 ]
Hu, Jie [5 ]
Jiang, Guangzheng [1 ,2 ]
Wang, Yaqi [1 ,2 ,6 ]
Hu, Shengbiao [1 ,2 ,6 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100864, Peoples R China
[3] China Univ Min & Technol, Sch Mines, Xuzhou 221116, Jiangsu, Peoples R China
[4] Seventh Inst Geol & Mineral Explorat Shandong Pro, Linyi 276006, Shandong, Peoples R China
[5] Chengdu Univ Technol, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610225, Peoples R China
[6] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
关键词
thermal conductivity; anisotropy; anisotropic factor; East China; cores; TERRESTRIAL HEAT-FLOW; LU FAULT ZONE; TEMPERATURE;
D O I
10.3390/min11101135
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The study of thermal conductivity anisotropy is of great importance for more accurate heat flow calculations, geodynamic studies, development and utilization of hot dry rock, and simulation of heat transfer in geological reservoirs of nuclear waste, and so on. To study the thermal conductivity anisotropy of rocks, 1158 cores from 60 boreholes in East China were tested for thermal conductivity, including thermal conductivity values parallel to (lambda(& PAR;)) and perpendicular to (lambda(& BOTTOM;)) structural planes of basalt, mudstones, gneisses, sandstones, carbonates, evaporites, and metamorphic rocks. The thermal conductivity anisotropy is not obvious for sand, clay, and evaporate, and the average anisotropic factors of 1.19 & PLUSMN; 0.22, 1.18 & PLUSMN; 0.17, and 1.18 & PLUSMN; 0.17 for tuff/breccia, granitoid and contact metamorphic rocks, respectively, indicate that these three rocks have strong anisotropy characteristics. Finally, the effect of thermal conductivity anisotropy on heat flow is studied and discussed in detail, showing that the results of thermal conductivity tests have a significant effect on the calculation of heat flow and thermal structure, and the data show that a deviation of about 10% in thermal conductivity causes a deviation of about 11% in heat flow, which may lead to a misperception of deep thermal structure studies. The regular and anisotropic characteristics of thermal conductivity of various rocks in Eastern China obtained in this paper can provide parameter support for projects such as heat flow calculations, thermal structure studies, and geothermal resource development and utilization.</p>
引用
收藏
页数:17
相关论文
共 39 条
[1]  
[Anonymous], 1956, GEOPHYS J R ASTRON S, DOI DOI 10.1111/J.1365-246X.1956.TB05563.X
[2]  
[Anonymous], 1988, Handbook of Terrestrial Heat-Flow Density Determination
[3]   Thermal conductivity of soils and rocks from the Melbourne (Australia) regiond [J].
Barry-Macaulay, D. ;
Bouazza, A. ;
Singh, R. M. ;
Wang, B. ;
Ranjith, P. G. .
ENGINEERING GEOLOGY, 2013, 164 :131-138
[4]  
Birch F, 1940, AM J SCI, V238, P529
[5]  
BIRCH F, 1950, GEOL SOC AM BULL, V61, P567, DOI 10.1130/0016-7606(1950)61[567:FOHITF]2.0.CO
[6]  
2
[7]  
Carslow H.S., 1986, Journal of Engineering Materials and Technology, V108, P378, DOI [10.1115/1.3225900, DOI 10.1115/1.3225900]
[8]  
Clark S.P, 1966, HDB PHYS CONSTANTS G, DOI [10.1130/MEM97, DOI 10.1130/MEM97]
[9]   HEAT FLOW IN THE AUSTRIAN ALPS [J].
CLARK, SP .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1961, 6 (01) :54-63
[10]   The thermal regime of the crystalline continental crust: Implications from the KTB [J].
Clauser, C ;
Giese, P ;
Huenges, E ;
Kohl, T ;
Lehmann, H ;
Rybach, L ;
Safanda, J ;
Wilhelm, H ;
Windloff, K ;
Zoth, G .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B8) :18417-18441