Effects of carrier concentrations on the charge transport properties in monolayer silicene

被引:10
作者
Abidin, B. I. [1 ]
Yeoh, K. H. [1 ]
Ong, D. S. [2 ]
Yong, T. K. [1 ]
机构
[1] Univ Tunku Abdul Rahman, Dept Elect & Elect Engn, Lee Kong Chian Fac Engn & Sci, Kajang 43000, Selangor, Malaysia
[2] Multimedia Univ, Fac Engn, Cyberjaya 63100, Selangor, Malaysia
关键词
analytical band Monte Carlo; charge scattering; silicene; MONTE-CARLO METHOD;
D O I
10.1088/1361-6463/aa8949
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using analytical band Monte Carlo approach, we have carried out a systematic study on the effects of carrier concentrations on the steady-state and transient electron transports that occur within a monolayer silicene. In particular, we have observed the following: First at steady-state, the electron mobility reduces with higher carrier concentrations. Secondly, in the transient regime we found that the drift velocity overshoot can be controlled by varying the carrier concentrations. We uncover that at carrier concentration of 1 x 1013 cm(-2), the drift velocity overshoot can reach up to 3.8 x 10(7) cm s(-1) which is close to the steady-state drift velocity saturation of graphene. Thirdly, the distance of the velocity over shoot can be further extended with higher carrier concentrations. Our findings could be useful and can be used as benchmark for future development of nanoscale silicene based devices.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Monte Carlo studies of low-field electron transport in monolayer silicene and graphene [J].
Borowik, Piotr ;
Thobel, Jean-Luc ;
Adamowicz, Leszek .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (11) :2916-2920
[2]   Monte Carlo study of electron transport in monolayer silicene [J].
Borowik, Piotr ;
Thobel, Jean-Luc ;
Adamowicz, Leszek .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (11)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[5]   Semiclassical Monte Carlo Analysis of Graphene FETs [J].
David, J. K. ;
Register, L. F. ;
Banerjee, S. K. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (04) :976-982
[6]   Electrically tunable band gap in silicene [J].
Drummond, N. D. ;
Zolyomi, V. ;
Fal'ko, V. I. .
PHYSICAL REVIEW B, 2012, 85 (07)
[7]   Silicane nanoribbons: electronic structure and electric field modulation [J].
Fang, D. Q. ;
Zhang, Y. ;
Zhang, S. L. .
NEW JOURNAL OF PHYSICS, 2014, 16
[8]   Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111) [J].
Feng, Baojie ;
Ding, Zijing ;
Meng, Sheng ;
Yao, Yugui ;
He, Xiaoyue ;
Cheng, Peng ;
Chen, Lan ;
Wu, Kehui .
NANO LETTERS, 2012, 12 (07) :3507-3511
[9]   Electronic structure of silicon-based nanostructures [J].
Guzman-Verri, Gian G. ;
Voon, L. C. Lew Yan .
PHYSICAL REVIEW B, 2007, 76 (07)
[10]   Electron mobility calculation for graphene on substrates [J].
Hirai, Hideki ;
Tsuchiya, Hideaki ;
Kamakura, Yoshinari ;
Mori, Nobuya ;
Ogawa, Matsuto .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (08)