Lipschitz stability of controlled invariant subspaces

被引:2
作者
Gracia, Juan-Miguel [1 ]
Velasco, Francisco E. [1 ]
机构
[1] Univ Basque Country, Dept Appl Math & Stat, Fac Pharm, E-01080 Vitoria, Spain
关键词
(A; B)-invariant subspace; Lipschitz stability; Roth's criterion;
D O I
10.1016/j.laa.2010.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (A, B) is an element of C(nxn) X C(nxm) and M be an (A, B)-invariant subspace. In this paper the following results are presented: (i)lf M boolean AND Im B = {0}, necessary and sufficient conditions for the Lipschitz stability of M are given. (ii) If M contains the controllability subspace of the pair (A, B), sufficient conditions for the Lipschitz stability of the subspace M are given. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1137 / 1162
页数:26
相关论文
共 8 条
[1]  
Bernstein D. S., 2005, Matrix Mathematics
[2]  
CHATELIN F, 1988, VALEURS PROPRES MATR
[3]   DIFFERENTIABLE FAMILIES OF SUBSPACES [J].
FERRER, J ;
GARCIA, MI ;
PUERTA, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 199 :229-252
[4]  
Gohberg I., 1986, INVARIANT SUBSPACES
[5]   Stability of controlled invariant subspaces [J].
Gracia, Juan-Miguel ;
Velasco, Francisco E. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) :416-434
[6]  
Ran ACM, 2002, OPER THEORY ADV APPL, V134, P337
[7]  
RODMAN L, 1986, OPERATOR THEORY ADV, V19, P399
[8]   Stable subspaces of matrix pairs [J].
Velasco, FE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 301 (1-3) :15-49