Mixed finite element methods for general quadrilateral grids

被引:12
作者
Kwak, Do Y. [1 ]
Pyo, Hyun Chan [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea
[2] KIS Pricing INC, Seoul 150885, South Korea
关键词
Mixed finite element; Raviart-Thomas element; Quadrilateral grids; ORDER ELLIPTIC PROBLEMS; COVOLUME METHOD; VOLUME METHODS; SUPERCONVERGENCE; APPROXIMATIONS;
D O I
10.1016/j.amc.2011.01.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a new mixed finite element of lowest order for general quadrilateral grids which gives optimal order error in the H(div)-norm. This new element is designed so that the H(div)-projection Pi(h) satisfies del . Pi(h) = P(h)div. A rigorous optimal order error estimate is carried out by proving a modified version of the Bramble-Hilbert lemma for vector variables. We show that a local H(div)-projection reproducing certain polynomials suffices to yield an optimal L-2-error estimate for the velocity and hence our approach also provides an improved error estimate for original Raviart-Thomas element of lowest order. Numerical experiments are presented to verify our theory. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:6556 / 6565
页数:10
相关论文
共 19 条
[1]  
[Anonymous], ESAIM-MATH MODEL NUM
[2]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[3]   Superconvergence of mixed covolume method for elliptic problems on triangular grids [J].
Bi, Chunjia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (02) :534-544
[4]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]  
CAI Z, 2000, NONCONFORMING QUADRI, V37
[7]  
Chou SH, 2003, MATH COMPUT, V72, P525, DOI 10.1090/S0025-5718-02-01426-6
[8]   Flux recovery from primal hybrid finite element methods [J].
Chou, SH ;
Kwak, DY ;
Kim, KY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) :403-415
[9]   A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: The overlapping covolume case [J].
Chou, SH ;
Kwak, DY ;
Kim, KY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) :1170-1196
[10]  
CIARLET P. G., 2002, Classics in Appl. Math., V40