FITTING A GAUSSIAN MIXTURE MODEL THROUGH THE GINI INDEX

被引:6
作者
Lopez-Lobato, Adriana Laura [1 ]
Avendano-Garrido, Martha Lorena [1 ]
机构
[1] Univ Veracruz, Fac Math, Circuito Gonzalo Aguirre Beltran S-N, Xalapa, Veracruz, Mexico
关键词
Gini index problem; Gaussian mixture model; clustering; EM; CONVERGENCE; DISTANCE;
D O I
10.34768/amcs-2021-0033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A linear combination of Gaussian components is known as a Gaussian mixture model. It is widely used in data mining and pattern recognition. In this paper, we propose a method to estimate the parameters of the density function given by a Gaussian mixture model. Our proposal is based on the Gini index, a methodology to measure the inequality degree between two probability distributions, and consists in minimizing the Gini index between an empirical distribution for the data and a Gaussian mixture model. We will show several simulated examples and real data examples, observing some of the properties of the proposed method.
引用
收藏
页码:487 / 500
页数:14
相关论文
共 22 条
[1]   On minimum Kantorovich distance estimators [J].
Bassetti, Federico ;
Bodini, Antonella ;
Regazzini, Eugenio .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (12) :1298-1302
[2]  
Bishop C. M., 2006, PATTERN RECOGN
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]  
Elkan C., 1997, P INT C KNOWL DISC D
[5]  
Fabozzi F., 2013, METHODS DISTANCES TH, P659
[6]   Naive Bayesian classification of structured data [J].
Flach, PA ;
Lachiche, N .
MACHINE LEARNING, 2004, 57 (03) :233-269
[7]   THE GINI CONCENTRATION INDEX: A REVIEW OF THE INFERENCE LITERATURE [J].
Giorgi, Giovanni Maria ;
Gigliarano, Chiara .
JOURNAL OF ECONOMIC SURVEYS, 2017, 31 (04) :1130-1148
[8]   Constrained Gaussian mixture model framework for automatic segmentation of MR brain images [J].
Greenspan, Hayit ;
Ruf, Amit ;
Goldberger, Jacob .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (09) :1233-1245
[9]   A FEASIBLE K-MEANS KERNEL TRICK UNDER NON-EUCLIDEAN FEATURE SPACE [J].
Klopotek, Robert ;
Klopotek, Mieczyslaw ;
Wierzchon, Slawomir .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2020, 30 (04) :703-715
[10]  
Kulczycki P., 2018, ADV MATH TECHNIQUES, P177