Spatially multiplexed single-cavity dual-comb laser

被引:45
作者
Pupeikis, J. [1 ]
Willenberg, B. [1 ]
Camenzind, S. L. [1 ]
Benayad, A. [2 ]
Camy, P. [2 ]
Phillips, C. R. [1 ]
Keller, U. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Dept Phys, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
[2] Univ Caen Normandie, CEA CNRS ENSICAEN, UMR 6252, Ctr Rech Sur Ions Mat & Photon CIMAP, 6 Blvd Marechal Juin, F-14050 Caen, France
来源
OPTICA | 2022年 / 9卷 / 07期
基金
欧洲研究理事会; 瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
PHASE-CONTROL; SPECTROSCOPY;
D O I
10.1364/OPTICA.457787
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Single-cavity dual-comb lasers are a new class of ultrafast lasers that have a wide possible application space including pump-probe sampling, optical ranging, and gas absorption spectroscopy. However, to date, laser cavity multiplexing has usually come with a trade-off in laser performance or relative timing noise suppression. We present a method for multiplexing a single laser cavity to support a pair of noise-correlated modes. These modes share all intracavity components and take a near-common path, but do not overlap on any active elements. We implement the method with an 80-MHz laser delivering more than 2.4 W of average power per comb with sub-140-fs pulses. We reach sub-cycle relative timing jitter of 2.2 fs [20 Hz, 100 kHz]. With this multiplexing technique, we can implement slow feedback on the repetition rate difference 1 frep, enabling this quantity to be drift-free, have low jitter, and be adjustable-a key combination for practical applications that was lacking in prior single-cavity dual-comb systems. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:713 / 716
页数:4
相关论文
共 26 条
[1]  
[Anonymous], ETH ZURICH RES COLLE
[2]   Controlling the phase evolution of few-cycle light pulses [J].
Apolonski, A ;
Poppe, A ;
Tempea, G ;
Spielmann, C ;
Udem, T ;
Holzwarth, R ;
Hänsch, TW ;
Krausz, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (04) :740-743
[3]  
Benedick AJ, 2012, NAT PHOTONICS, V6, P97, DOI [10.1038/nphoton.2011.326, 10.1038/NPHOTON.2011.326]
[4]   Timing jitter characterization of free-running dual-comb laser with sub-attosecond resolution using optical heterodyne detection [J].
Camenzind, S. L. ;
Koenen, D. ;
Willenberg, B. ;
Pupeikis, J. ;
Phillips, C. R. ;
Keller, U. .
OPTICS EXPRESS, 2022, 30 (04) :5075-5094
[5]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/OPTICA.3.000414, 10.1364/optica.3.000414]
[6]   PUMP PROBE METHOD FOR FAST ANALYSIS OF VISIBLE SPECTRAL SIGNATURES UTILIZING ASYNCHRONOUS OPTICAL-SAMPLING [J].
ELZINGA, PA ;
KNEISLER, RJ ;
LYTLE, FE ;
JIANG, Y ;
KING, GB ;
LAURENDEAU, NM .
APPLIED OPTICS, 1987, 26 (19) :4303-4309
[7]   Ultralow Noise Optical Frequency Combs [J].
Endo, Mamoru ;
Shoji, Tyko D. ;
Schibli, Thomas R. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (05)
[8]   Dual-comb thin-disk oscillator [J].
Fritsch, Kilian ;
Hofer, Tobias ;
Brons, Jonathan ;
Iandulskii, Maksim ;
Mak, Ka Fai ;
Chen, Zaijun ;
Picque, Nathalie ;
Pronin, Oleg .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy [J].
Ideguchi, Takuro ;
Nakamura, Tasuku ;
Kobayashi, Yohei ;
Goda, Keisuke .
OPTICA, 2016, 3 (07) :748-753
[10]   Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J].
Jones, DJ ;
Diddams, SA ;
Ranka, JK ;
Stentz, A ;
Windeler, RS ;
Hall, JL ;
Cundiff, ST .
SCIENCE, 2000, 288 (5466) :635-639