High distance Heegaard splittings from involutions

被引:0
作者
Ma, Jiming [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Heegaard distance; Mapping class group; CURVE COMPLEX; GEOMETRY;
D O I
10.1016/j.topol.2010.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fixed an oriented handlebody H = H(+) with boundary F, let eta(H(+))= H(-) be the mirror image of H(+) along F, so eta(F) is the boundary of H(-), for a map f :F -> F, we have a 3-manifold by gluing H(+) and H(-) along F with attaching map f, and denote it by M(f) = H(+) U(f: F -> F) H(-). In this note, we show that there are involutions f: F -> F which are also reducible, such that M(f) have arbitrarily high Heegaard distances. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:409 / 411
页数:3
相关论文
共 10 条
[1]   Distances of Heegaard splittings [J].
Abrams, A ;
Schleimer, S .
GEOMETRY & TOPOLOGY, 2005, 9 :95-119
[2]  
Birman J., 2006, Problems on mapping class groups and related topics, P133
[3]  
FATHI A, 1979, ASTERISQUE, V66
[4]  
Harvey William., 1981, Ann. of Math. Stud, V97, P245
[5]   3-manifolds as viewed from the curve complex [J].
Hempel, J .
TOPOLOGY, 2001, 40 (03) :631-657
[6]  
Kobayashi T, 1988, CONTEMP MATH, V78, P327
[7]   Geometry of the complex of curves I: Hyperbolicity [J].
Masur, HA ;
Minsky, YN .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :103-149
[8]   Geometry of the complex of curves II: Hierarchical structure [J].
Masur, HA ;
Minsky, YN .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (04) :902-974
[9]  
Masur HA, 2004, CONTEMP MATH, V355, P309
[10]   ON THE GEOMETRY AND DYNAMICS OF DIFFEOMORPHISMS OF SURFACES [J].
THURSTON, WP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) :417-431