Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime

被引:51
作者
Dubrovskii, V. G. [1 ,2 ,3 ]
Koryakin, A. A. [1 ,2 ]
Sibirev, N. V. [1 ,2 ,4 ]
机构
[1] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
[2] St Petersburg Acad Univ, Khlopina 8-3, St Petersburg 194021, Russia
[3] Ioffe Phys Tech Inst RAS, Politekhnicheskaya 26, St Petersburg 194021, Russia
[4] St Petersburg State Univ, Ulyanovskaya 3, St Petersburg 198504, Russia
关键词
III-V nanowires; Axial heterostructures; Composition; Interfacial abruptness; INTERFACIAL ABRUPTNESS; SOLID-SOLUTION; QUANTUM DOTS; GROWTH; PHASE; GAAS; MORPHOLOGY;
D O I
10.1016/j.matdes.2017.07.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new analytical approach for understanding and tuning the composition of ternary nanowires of III-V semiconductor compounds and interfacial abruptness of axial nanowire heterostructures in nucleation-limited regime of the vapor-liquid-solid growth. Binary nanowires of elemental semiconductors grown with any liquid catalyst present a simple particular case. The solid composition is first obtained as a function of the liquid composition by determining the saddle point of the island formation energy. This relationship is then used to obtain the compositional profiles across axial heterostructures in a kinetic treatment. Several ternary systems are considered including InGaAs, AlGaAs and InAsP. We find a new effect in InGaAs system which is due to strong interactions between solid InAs and GaAs and yields the miscibility gaps. This may help to form atomically sharp axial heterointerfaces in optimized growth recipes. Our results are consistent with earlier models and experimental data on GaAs/AlGaAs/GaAs nanowire heterostructures. Even more importantly, we formulate general routes for compositional design and obtaining sharp interfaces in different binary and ternary solid alloys. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:400 / 408
页数:9
相关论文
共 55 条
[21]   Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V nanowires [J].
Glas, Frank .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
[22]   Quaternary Chemical Potentials for Gold-Catalyzed Growth of Ternary InGaAs Nanowires [J].
Grecenkov, Jurij ;
Dubrovskii, Vladimir G. ;
Ghasemi, Masoomeh ;
Johansson, Jonas .
CRYSTAL GROWTH & DESIGN, 2016, 16 (08) :4526-4530
[23]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[24]   Polarity-driven Nonuniform Composition in InGaAs Nanowires [J].
Guo, Ya-Nan ;
Burgess, Timothy ;
Gao, Qiang ;
Tan, H. Hoe ;
Jagadish, Chennupati ;
Zou, Jin .
NANO LETTERS, 2013, 13 (11) :5085-5089
[25]   Composition of Gold Alloy Seeded InGaAs Nanowires in the Nucleation Limited Regime [J].
Johansson, Jonas ;
Ghasemi, Masoomeh .
CRYSTAL GROWTH & DESIGN, 2017, 17 (04) :1630-1635
[26]   Composition and Phase Tuned InGaAs Alloy Nanowires [J].
Jung, Chan Su ;
Kim, Han Sung ;
Jung, Gyeong Bok ;
Gong, Kang Jun ;
Cho, Yong Jae ;
Jang, So Young ;
Kim, Chang Hyun ;
Lee, Chi-Woo ;
Park, Jeunghee .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (16) :7843-7850
[27]  
Kashchiev D, 2000, Nucleation
[28]   Junctions in Axial III-V Heterostructure Nanowires Obtained via an Interchange of Group III Elements [J].
Krogstrup, Peter ;
Yamasaki, Jun ;
Sorensen, Claus B. ;
Johnson, Erik ;
Wagner, Jakob B. ;
Pennington, Robert ;
Aagesen, Martin ;
Tanaka, Nobuo ;
Nygard, Jesper .
NANO LETTERS, 2009, 9 (11) :3689-3693
[29]  
Kurasov V., 2015, J THERMODYNAMICS, V2015
[30]   Modeling of InAs-InSb nanowires grown by Au-assisted chemical beam epitaxy [J].
Lugani, L. ;
Ercolani, D. ;
Sorba, L. ;
Sibirev, N. V. ;
Timofeeva, M. A. ;
Dubrovskii, V. G. .
NANOTECHNOLOGY, 2012, 23 (09)