Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime

被引:51
作者
Dubrovskii, V. G. [1 ,2 ,3 ]
Koryakin, A. A. [1 ,2 ]
Sibirev, N. V. [1 ,2 ,4 ]
机构
[1] ITMO Univ, Kronverkskiy Pr 49, St Petersburg 197101, Russia
[2] St Petersburg Acad Univ, Khlopina 8-3, St Petersburg 194021, Russia
[3] Ioffe Phys Tech Inst RAS, Politekhnicheskaya 26, St Petersburg 194021, Russia
[4] St Petersburg State Univ, Ulyanovskaya 3, St Petersburg 198504, Russia
关键词
III-V nanowires; Axial heterostructures; Composition; Interfacial abruptness; INTERFACIAL ABRUPTNESS; SOLID-SOLUTION; QUANTUM DOTS; GROWTH; PHASE; GAAS; MORPHOLOGY;
D O I
10.1016/j.matdes.2017.07.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new analytical approach for understanding and tuning the composition of ternary nanowires of III-V semiconductor compounds and interfacial abruptness of axial nanowire heterostructures in nucleation-limited regime of the vapor-liquid-solid growth. Binary nanowires of elemental semiconductors grown with any liquid catalyst present a simple particular case. The solid composition is first obtained as a function of the liquid composition by determining the saddle point of the island formation energy. This relationship is then used to obtain the compositional profiles across axial heterostructures in a kinetic treatment. Several ternary systems are considered including InGaAs, AlGaAs and InAsP. We find a new effect in InGaAs system which is due to strong interactions between solid InAs and GaAs and yields the miscibility gaps. This may help to form atomically sharp axial heterointerfaces in optimized growth recipes. Our results are consistent with earlier models and experimental data on GaAs/AlGaAs/GaAs nanowire heterostructures. Even more importantly, we formulate general routes for compositional design and obtaining sharp interfaces in different binary and ternary solid alloys. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:400 / 408
页数:9
相关论文
共 55 条
[1]   Crystal Phase Quantum Dots [J].
Akopian, N. ;
Patriarche, G. ;
Liu, L. ;
Harmand, J. -C. ;
Zwiller, V. .
NANO LETTERS, 2010, 10 (04) :1198-1201
[2]   Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires [J].
Ameruddin, A. S. ;
Caroff, P. ;
Tan, H. H. ;
Jagadish, C. ;
Dubrovskii, V. G. .
NANOSCALE, 2015, 7 (39) :16266-16272
[3]   InxGa1-xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology [J].
Ameruddin, Amira S. ;
Fonseka, H. Aruni ;
Caroff, Philippe ;
Wong-Leung, Jennifer ;
Veld, Roy L. M. Op Het ;
Boland, Jessica L. ;
Johnston, Michael B. ;
Tan, Hark Hoe ;
Jagadish, Chennupati .
NANOTECHNOLOGY, 2015, 26 (20) :1-10
[4]  
[Anonymous], BINARY ALLOY PHASE D
[5]   A BINARY DATABASE FOR III-V COMPOUND SEMICONDUCTOR SYSTEMS [J].
ANSARA, I ;
CHATILLON, C ;
LUKAS, HL ;
NISHIZAWA, T ;
OHTANI, H ;
ISHIDA, K ;
HILLERT, M ;
SUNDMAN, B ;
ARGENT, BB ;
WATSON, A ;
CHART, TG ;
ANDERSON, T .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1994, 18 (02) :177-222
[6]   THERMODYNAMIC STUDY OF THE AL-GA-AS-GE SYSTEM [J].
ANSARA, I ;
DUTARTRE, D .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1984, 8 (04) :323-342
[7]  
Borgström MT, 2005, NANO LETT, V5, P1439, DOI 10.1021/nl050802y
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   The diffusion mechanism in the formation of GaAs and AlGaAs nanowhiskers during the process of molecular-beam epitaxy [J].
Cirlin, GE ;
Dubrovskii, VG ;
Sibirev, NV ;
Soshnikov, IP ;
Samsonenko, YB ;
Tonkikh, AA ;
Ustinov, VM .
SEMICONDUCTORS, 2005, 39 (05) :557-564
[10]   Formation of InAs quantum dots on a silicon (100) surface [J].
Cirlin, GE ;
Dubrovskii, VG ;
Petrov, VN ;
Polyakov, NK ;
Korneeva, NP ;
Demidov, VN ;
Golubok, AO ;
Masalov, SA ;
Kurochkin, DV ;
Gorbenko, OM ;
Komyak, NI ;
Ustinov, VM ;
Egorov, AY ;
Kovsh, AR ;
Maximov, MV ;
Tsatsul'nikov, AF ;
Volovik, BV ;
Zhukov, AE ;
Kop'ev, PS ;
Alferov, ZI ;
Ledentsov, NN ;
Grundmann, M ;
Bimberg, D .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1998, 13 (11) :1262-1265