Spectral Properties of Square Hyponormal Operators

被引:3
作者
Cho, Muneo [1 ]
Mosic, Dijana [2 ]
Nastovska, Biljana Nacevska [3 ]
Saito, Taiga [1 ]
机构
[1] Kanagawa Univ, Dept Math, Hiratsuka, Kanagawa 2591293, Japan
[2] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
[3] Ss Cyril & Methodius Univ Skopje, Fac Elect Engn & Informat Technol, Skopje, Macedonia
关键词
Hilbert space; linear operator; hyponormal operator; spectrum; SVEP; WEYLS THEOREM;
D O I
10.2298/FIL1915845C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a square hyponormal operator as a bounded linear operator T on a complex Hilbert space H such that T-2 is a hyponormal operator, and we investigate some basic properties of this operator. Under the hypothesis sigma(T) boolean AND (-sigma(T)) subset of {0}, we study spectral properties of a square hyponormal operator. In particular, we show that if z and w are distinct eigen-values of T and x, y is an element of H let are corresponding eigen-vectors, respectively, then < x, y > = 0. Also, we define nth hyponormal operators and present some properties of this kind of operators.
引用
收藏
页码:4845 / 4854
页数:10
相关论文
共 12 条
[1]  
Aiena P., 2014, FREDHOLM LOCAL SPECT
[2]   ALGEBRAICALLY PARANORMAL OPERATORS ON BANACH SPACES [J].
Aiena, Pietro .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (02) :136-145
[3]   Powers of p-hyponormal operators [J].
Aluthge, A ;
Wang, D .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (03) :279-284
[4]  
Aluzuraiqi SA., 2010, GEN MATH NOTES, V1, P61
[5]   Spectral Properties of n-Normal Operators [J].
Cho, Muneo ;
Nacevska, Biljana .
FILOMAT, 2018, 32 (14) :5063-5069
[6]   Remarks on n-normal Operators [J].
Cho, Muneo ;
Lee, Ji Eun ;
Tanahashi, Kotaro ;
Uchiyama, Atsushi .
FILOMAT, 2018, 32 (15) :5441-5451
[7]   Weyl's theorem for algebraically paranormal operators [J].
Curto, RE ;
Han, YM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 47 (03) :307-314
[8]   Weyl's theorem holds for algebraically hyponormal operators [J].
Han, YM ;
Lee, WY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2291-2296
[9]  
PUTINAR M, 1984, J OPERAT THEOR, V12, P385
[10]   HYPONORMAL OPERATORS [J].
STAMPFLI, JG .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) :1453-&