VARIABLE IMPORTANCE AND RANDOM FOREST CLASSIFICATION USING RADARSAT-2 POLSAR DATA

被引:3
|
作者
Hariharan, Siddharth [1 ]
Tirodkar, Siddhesh [1 ]
De, Shaunak [1 ]
Bhattacharya, Avik [1 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Powai 400076, India
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
Random Forest Classification; Synthetic Aperture Radar; Polarimetry;
D O I
10.1109/IGARSS.2014.6946649
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we have classified Polarimetric Synthetic Aperture Radar (PolSAR) data using the Random Forest (RF) classifier. The variables were ranked using the mean decrease in accuracy permutation method for each terrain class. RADARSAT-2 (RS-2) data acquired over Mumbai, India was used in this study. This technique is able to efficiently classify the dataset, as well as rank the parameters used in that classifier.
引用
收藏
页码:1210 / 1213
页数:4
相关论文
共 50 条
  • [41] Hierarchical Bayesian Data Analysis in Radiometric SAR System Calibration: A Case Study on Transponder Calibration with RADARSAT-2 Data
    Doering, Bjoern J.
    Schmidt, Kersten
    Jirousek, Matthias
    Rudolf, Daniel
    Reimann, Jens
    Raab, Sebastian
    Antony, John Walter
    Schwerdt, Marco
    REMOTE SENSING, 2013, 5 (12) : 6667 - 6690
  • [42] Marine added-value products using RADARSAT-2 fine quad-polarization
    Migliaccio, M.
    Nunziata, F.
    Montuori, A.
    Brown, C. E.
    CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (05) : 443 - 451
  • [43] Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance
    Ratha, Debanshu
    Bhattacharya, Avik
    Frery, Alejandro C.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (01) : 151 - 155
  • [44] EVALUATING THE POTENTIAL OF UNSUPERVISED CLASSIFICATIONS FOR ICEFOOT CARTOGRAPY USING RADARSAT-2 HIGH RESOLUTION IMAGERY
    Tolzczuk-Leclerc, S.
    Hudier, E.
    Belanger, S.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3572 - 3575
  • [45] The Potential of Using Radarsat-2 Satellite Image for Modeling and Mapping Wheat Yield in a Semiarid Environment
    Barbouchi, Meriem
    Lhissou, Rachid
    Abdelfattah, Riadh
    El Alem, Anas
    Chokmani, Karem
    Ben Aissa, Nadhira
    M'hamed, Hatem Cheikh
    Annabi, Mohamed
    Bahri, Haithem
    AGRICULTURE-BASEL, 2022, 12 (03):
  • [46] Application of the Proposed Thresholding Method for Rice Paddy Field Detection with Radarsat-2 SAR Imagery Data
    Arai, Kohei
    Azuma, Kenta
    INTELLIGENT COMPUTING, VOL 1, 2022, 506 : 836 - 845
  • [47] Insights Into Polarimetric Processing for Wetlands From Backscatter Modeling and Multi-Incidence Radarsat-2 Data
    Ahern, Frank
    Brisco, Brian
    Murnaghan, Kevin
    Lancaster, Philip
    Atwood, Donald K.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) : 3040 - 3050
  • [48] Capability of multi-temporal Radarsat-2 data in monitoring canola crop and its plant height
    Yang, Hao
    Chen, Erxue
    Li, Zengyuan
    Yang, Guijun
    Xu, Xingang
    Yuan, Lin
    Feng, Qi
    Zhao, Lei
    THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 237 - 241
  • [49] Optimum Surface Roughness to Parameterize Advanced Integral Equation Model for Soil Moisture Retrieval in Prairie Area Using Radarsat-2 Data
    Bai, Xiaojing
    He, Binbin
    Li, Xiaowen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 2437 - 2449
  • [50] An Inter-Comparison of Techniques for Determining Velocities of Maritime Arctic Glaciers, Svalbard, Using Radarsat-2 Wide Fine Mode Data
    Schellenberger, Thomas
    Van Wychen, Wesley
    Copland, Luke
    Kaab, Andreas
    Gray, Laurence
    REMOTE SENSING, 2016, 8 (09):