Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials

被引:231
作者
Li, Yan [1 ]
Liu, Xiang [2 ]
Wang, Li [1 ,3 ]
Feng, Xuning [1 ]
Ren, Dongsheng [1 ,3 ]
Wu, Yu [1 ]
Xu, Guiliang [2 ]
Lu, Languang [1 ]
Hou, Junxian [1 ]
Zhang, Weifeng [1 ]
Wang, Yongling [1 ]
Xu, Wenqian [4 ]
Ren, Yang [4 ]
Wang, Zaifa [5 ]
Huang, Jianyu [5 ]
Meng, Xiangfeng [6 ]
Han, Xuebing [1 ]
Wang, Hewu [1 ]
He, Xiangming [3 ]
Chen, Zonghai [2 ]
Amine, Khalil [2 ,7 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[4] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA
[5] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[6] Contemporary Amperex Technol Co Ltd, Corp Publ Affairs Dept, Ningde 352100, Peoples R China
[7] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
LiNi0.8Mn0.1Co0.1O2; Thermal runway; Lithium-ion battery; Mechanism; Battery safety; ACCELERATING RATE CALORIMETRY; STRUCTURAL-CHANGES; ELECTROLYTE; STABILITY; SPECTROSCOPY; INTERFACE; BEHAVIOR; MODEL;
D O I
10.1016/j.nanoen.2021.105878
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Battery safety is critical to the application of lithium-ion batteries, especially for high energy density battery applied in electric vehicles. In this paper, the thermal runaway mechanism of LiNi0.8Co0.1Mn0.1O2 based lithium-ion battery is illustrated. And the reaction between cathode and flammable electrolyte is proved as the trigger of the thermal runaway accident. In detail, with differential scanning calorimeter tests for battery components, the material combination contributing to thermal runaway was decoupled. Characterization with synchrotron X-ray diffraction and transmission electron microscopy with in-situ heating proved that the vigorous exothermic reaction is initiated by the liberated oxygen species. The pulse of highly active oxygen species reacted quickly with the electrolyte, accompanied with tremendous heat release, which accelerated the phase transformation of charged cathode. Also, the mechanism is verified by a confirmatory experiment when the highly active oxygen species were trapped by anion receptor, the phase transformation of the charged cathode was inhibited. Clarifying the thermal runaway mechanism of LiNi0.8Co0.1Mn0.1 based lithium-ion battery may light the way to battery chemistries of both high energy density and high safety.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy [J].
Bak, Seong-Min ;
Hu, Enyuan ;
Zhou, Yongning ;
Yu, Xiqian ;
Senanayake, Sanjaya D. ;
Cho, Sung-Jin ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing ;
Nam, Kyung-Wan .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) :22594-22601
[2]   Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Chang, Wonyoung ;
Yu, Xiqian ;
Hu, Enyuan ;
Hwang, Sooyeon ;
Stach, Eric A. ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing .
CHEMISTRY OF MATERIALS, 2013, 25 (03) :337-351
[3]   Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms [J].
Bodenes, Lucille ;
Naturel, Romain ;
Martinez, Herve ;
Dedryvere, Remi ;
Menetrier, Michel ;
Croguennec, Laurence ;
Peres, Jean-Paul ;
Tessier, Cecile ;
Fischer, Florent .
JOURNAL OF POWER SOURCES, 2013, 236 :265-275
[4]   Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Cui, Hao ;
Liu, Xiang ;
Jin, Changyong ;
Zhang, Fangshu ;
Xu, Chengshan ;
Hsu, Hungjen ;
Gao, Shang ;
Chen, Tianyu ;
Li, Yalun ;
Wang, Tianze ;
Wang, Hao ;
Li, Maogang ;
Ouyang, Minggao .
APPLIED ENERGY, 2019, 246 :53-64
[5]   Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode [J].
Feng, Xuning ;
Zheng, Siqi ;
He, Xiangming ;
Wang, Li ;
Wang, Yu ;
Ren, Dongsheng ;
Ouyang, Minggao .
FRONTIERS IN ENERGY RESEARCH, 2018, 6
[6]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[7]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[8]   Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions [J].
Gaulupeau, B. ;
Delobel, B. ;
Cahen, S. ;
Fontana, S. ;
Herold, C. .
JOURNAL OF POWER SOURCES, 2017, 342 :808-815
[9]   Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries [J].
Giordano, Livia ;
Karayaylali, Pinar ;
Yu, Yang ;
Katayama, Yu ;
Maglia, Filippo ;
Lux, Simon ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (16) :3881-3887
[10]   A review on the key issues of the lithium ion battery degradation among the whole life cycle [J].
Han, Xuebing ;
Lu, Languang ;
Zheng, Yuejiu ;
Feng, Xuning ;
Li, Zhe ;
Li, Jianqiu ;
Ouyang, Minggao .
ETRANSPORTATION, 2019, 1