Stochastic Models for Nonlinear Cross-Diffusion Systems

被引:1
作者
Belopolskaya, Yana [1 ]
机构
[1] St Petersburg State Univ Architecture & Civil Eng, St Petersburg 190005, Russia
来源
STATISTICS AND SIMULATION, IWS 8 2015 | 2018年 / 231卷
关键词
Stochastic flow; Cross-diffusion; PDE generalized solution; Probabilistic representation; SEGREGATION; ENTROPY;
D O I
10.1007/978-3-319-76035-3_10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under a priori assumptions concerning existence and uniqueness of the Cauchy problem solution for a system of quasilinear parabolic equations with cross-diffusion, we treat the PDE system as an analogue of systems of forward Kolmogorov equations for some unknown stochastic processes and derive expressions for their generators. This allows to construct a stochastic representation of the required solution. We prove that introducing stochastic test function we can check that the stochastic system gives rise to the required generalized solution of the original PDE system. Next, we derive a closed stochastic system which can be treated as a stochastic counterpart of the Cauchy problem for a parabolic system with cross-diffusion.
引用
收藏
页码:145 / 159
页数:15
相关论文
共 14 条
[1]  
Belopolskaya Ya. I, 2006, J MATH SCI, V133, P1207, DOI [10.1007/s10958-006-0031-z, DOI 10.1007/S10958-006-0031-Z]
[2]   GENERALIZED SOLUTIONS OF THE CAUCHY PROBLEM FOR SYSTEMS OF NONLINEAR PARABOLIC EQUATIONS AND DIFFUSION PROCESSES [J].
Belopolskaya, Yana ;
Woyczynski, Wojbor A. .
STOCHASTICS AND DYNAMICS, 2012, 12 (01)
[3]  
Belopolskaya YI., 1990, STOCHASTIC EQUATIONS, DOI 10.1007/978-94-009-2215-0
[4]  
Bogachev V. I., 2011, J MATH SCI, V179, P7, DOI DOI 10.1007/s10958-011-0581-6
[5]   ENTROPY, DUALITY, AND CROSS DIFFUSION [J].
Desvillettes, L. ;
Lepoutre, Th ;
Moussa, A. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :820-853
[6]   Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium [J].
Fontbona, Joaquin ;
Meleard, Sylvie .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (04) :829-854
[7]   On a cross-diffusion segregation problem arising from a model of interacting particles [J].
Galiano, Gonzalo ;
Selgas, Virginia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 18 :34-49
[8]   The boundedness-by-entropy method for cross-diffusion systems [J].
Juengel, Ansgar .
NONLINEARITY, 2015, 28 (06) :1963-2001
[9]  
Jungel A, 2010, MODEL SIMUL SCI ENG, P397, DOI 10.1007/978-0-8176-4946-3_15
[10]  
Kunita H., 1994, J THEORET PROBAB, V7, P247, DOI [DOI 10.1007/BF02214270, 10.1007/BF02214270]