High performance edible nanocomposite films containing bacterial cellulose nanocrystals

被引:175
作者
George, Johnsy [1 ]
Siddaramaiah [2 ]
机构
[1] Def Food Res Lab, Mysore 570011, Karnataka, India
[2] Sri Jayachamarajendra Coll Engn, Mysore 570006, Karnataka, India
关键词
Edible nanocomposites; Cellulose nanocrystals; Gelatin; WATER-VAPOR BARRIER; MICROCRYSTALLINE CELLULOSE; POLYMER NANOCOMPOSITES; MECHANICAL-PROPERTIES; ACID TREATMENT; COMPOSITES; BIOPOLYMER; WHISKERS; GELATIN; FIBERS;
D O I
10.1016/j.carbpol.2011.10.019
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Bacterial cellulose obtained from Gluconacetobacter xylinus in the form of long fibers were acid hydrolyzed under controlled conditions to obtain cellulose nanocrystals. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed the formation of rod like cellulose nanocrystals having an average diameter and length of 20 +/- 5 nm and 290 +/- 130 nn respectively. These nanocrystals were used to prepare gelatin nanocomposite films and characterized for elucidating its performance. The formation of percolated networks of cellulose nanocrystals within gelatin matrix resulted in improving the mechanical properties of nanocomposites. The moisture sorption and water vapor permeability (WVP) studies revealed that the addition of cellulose nanocrystals reduced the moisture affinity of gelatin, which is very favorable for edible packaging applications. Results of this study demonstrated the use of bacterial cellulose nanocrystals (BCNCs) in the fabrication of edible, biodegradable and high-performance nanocomposite films for food packaging applications at relatively low cost. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2031 / 2037
页数:7
相关论文
共 38 条
[1]   Effect of trace electrolyte on liquid crystal type of cellulose microcrystals [J].
Araki, J ;
Kuga, S .
LANGMUIR, 2001, 17 (15) :4493-4496
[2]   Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose [J].
Araki, J ;
Wada, M ;
Kuga, S ;
Okano, T .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 142 (01) :75-82
[3]   Composite Edible Films Based on Hydroxypropyl Methylcellulose Reinforced with Microcrystalline Cellulose Nanoparticles [J].
Bilbao-Sainz, Cristina ;
Wood, Roberto J. Avena-Bustillos Delilah F. ;
Williams, Tina G. ;
McHugh, Tara H. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (06) :3753-3760
[4]   Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis [J].
Capadona, Jeffrey R. ;
Shanmuganathan, Kadhiravan ;
Tyler, Dustin J. ;
Rowan, Stuart J. ;
Weder, Christoph .
SCIENCE, 2008, 319 (5868) :1370-1374
[5]   A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates [J].
Capadona, Jeffrey R. ;
Van Den Berg, Otto ;
Capadona, Lynn A. ;
Schroeter, Michael ;
Rowan, Stuart J. ;
Tyler, Dustin J. ;
Weder, Christoph .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :765-769
[6]   Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane [J].
Choi, YJ ;
Ahn, YH ;
Kang, MS ;
Jun, HK ;
Kim, IS ;
Moon, SH .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2004, 79 (01) :79-84
[7]   Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films [J].
Dogan, N. ;
Mchugh, T. H. .
JOURNAL OF FOOD SCIENCE, 2007, 72 (01) :E16-E22
[8]  
Dufresne A, 2006, J NANOSCI NANOTECHNO, V6, P322, DOI 10.1166/jnn.2006.005
[9]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33
[10]  
Gennadios A., 2004, Proteins in food processing, P442, DOI 10.1533/9781855738379.3.442