A multivariate skew normal distribution

被引:101
作者
Gupta, AK [1 ]
González-Farías, G
Domínguez-Molina, JA
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Ctr Invest & Matemat, Mexico City, DF, Mexico
[3] Univ Guanajuato, Guanajuato, Mexico
关键词
non-normal models; density; marginal; conditional; regression; moments; moment generating function; contours;
D O I
10.1016/S0047-259X(03)00131-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we define a new class of multivariate skew-normal distributions. Its properties are studied. In particular we derive its density, moment generating function, the first two moments and marginal and conditional distributions. We illustrate the contours of a bivariate density as well as conditional expectations. We also give an extension to construct a general multivariate skew normal distribution. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 12 条
[1]  
ARELLANOVALLE R, 2001, GEN CLASS SKEW DISTR
[2]   Skewed multivariate models related to hidden truncation and/or selective reporting [J].
Arnold B.C. ;
Beaver R.J. .
Test, 2002, 11 (1) :7-54
[3]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[4]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[5]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[6]  
Azzalini A., 1986, Rivista Statistica, V46, P199
[7]   CORRELATION CURVES - MEASURES OF ASSOCIATION AS FUNCTIONS OF COVARIATE VALUES [J].
BJERVE, S ;
DOKSUM, K .
ANNALS OF STATISTICS, 1993, 21 (02) :890-902
[8]  
DOMINGUEZMOLINA J, 2001, 0109 BOWL GREEN STAT
[9]   Moments of skew-normal random vectors and their quadratic forms [J].
Genton, MG ;
He, L ;
Liu, XW .
STATISTICS & PROBABILITY LETTERS, 2001, 51 (04) :319-325
[10]  
Gupta A. K., 2001, 0110 BOWL GREEN STAT