Increased Active Sites on Irregular Morphological α-Fe2O3 Nanorods for Enhanced Photoelectrochemical Performance

被引:40
作者
Sun, Jiawei [1 ,2 ]
Xia, Weiwei [1 ,2 ]
Zheng, Qian [1 ,2 ]
Zeng, Xianghua [1 ,2 ,3 ]
Liu, Wei [4 ]
Liu, Gang [1 ,2 ]
Wang, Pengdi [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R China
[2] Yangzhou Univ, Inst Optoelect Technol, Yangzhou 225002, Jiangsu, Peoples R China
[3] Yangzhou Univ, Coll Elect Energy & Power Engn, Yangzhou 225002, Jiangsu, Peoples R China
[4] Southeast Univ, State Key Lab Bioelect, Sch Biol Sci & Med Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN VACANCY; WATER; SURFACE; PHOTOANODES; GENERATION; CELLS; FILMS;
D O I
10.1021/acsomega.0c01072
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Uniform rectangular alpha-Fe2O3 nanorods (R-Fe2O3) and irregular alpha-Fe2O3 nanorods (D-Fe2O3) with a random size vertically aligned on fluorine-doped tin oxide were prepared with a facile one-step hydrothermal procedure. X-ray diffraction (XRD) measurements and Raman spectra confirm that the obtained samples are alpha-Fe2O3, and XRD patterns show that D-Fe2O3 has two extra (012) and (104) planes of hematite in addition to the identical peaks to R-Fe2O3. The carrier density of the D-Fe2O3 sample is four times larger than that of R-Fe2O3. Finally, the D-Fe2O3 photoelectrode exhibited a better photoelectrochemical (PEC) performance under visible illumination than that of R-Fe2O3, achieving the photocurrent density of 0.15 mA cm(-2) at 1.23 V versus reversible hydrogen electrode. In addition, incident photo-to-current conversion efficiency of D-Fe2O3 is nearly three times larger than that of R-Fe2O3. Hence, the improved PEC performance of D-Fe2O3 can be ascribed to higher carrier density resulting from the amount of oxygen vacancies and more activated exposed surface facets.
引用
收藏
页码:12339 / 12345
页数:7
相关论文
共 38 条
[1]   Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping [J].
Annamalai, Alagappan ;
Shinde, Pravin S. ;
Subramanian, Arunprabaharan ;
Kim, Jae Young ;
Kim, Jin Hyun ;
Choi, Sun Hee ;
Lee, Jae Sung ;
Jang, Jum Suk .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) :5007-5013
[2]   Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH)2 Annihilation and Oxygen Vacancy Generation by Vacuum Annealing [J].
Baek, Minki ;
Kim, Donghyung ;
Yong, Kijung .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) :2317-2325
[3]   Chemistry - Oxygen vacancies and catalysis on ceria surfaces [J].
Campbell, CT ;
Peden, CHF .
SCIENCE, 2005, 309 (5735) :713-714
[4]   Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting [J].
Cesar, Ilkay ;
Sivula, Kevin ;
Kay, Andreas ;
Zboril, Radek ;
Graetzel, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) :772-782
[5]   Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104}, {113} and {001} surface facets [J].
Chan, J. Y. T. ;
Ang, S. Y. ;
Ye, E. Y. ;
Sullivan, M. ;
Zhang, J. ;
Lin, M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (38) :25333-25341
[6]   Nano-architecture and material designs for water splitting photoelectrodes [J].
Chen, Hao Ming ;
Chen, Chih Kai ;
Liu, Ru-Shi ;
Zhang, Lei ;
Zhang, Jiujun ;
Wilkinson, David P. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (17) :5654-5671
[7]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[8]   Ti-doped hematite nanostructures for solar water splitting with high efficiency [J].
Deng, Jiujun ;
Zhong, Jun ;
Pu, Aiwu ;
Zhang, Duo ;
Li, Ming ;
Sun, Xuhui ;
Lee, Shuit-Tong .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (08)
[9]   Hematite-based photoelectrode for solar water splitting with very high photovoltage [J].
Dias, Paula ;
Andrade, Luisa ;
Mendes, Adelio .
NANO ENERGY, 2017, 38 :218-231
[10]  
Dou Z. F., 2014, ACS APPL MATER INTER, V4, P5698