Minimal injective resolutions and Auslander-Gorenstein property for path algebras

被引:4
作者
Asadollahi, J. [1 ]
Hafezi, R. [2 ]
Keshavarz, M. H. [1 ]
机构
[1] Univ Isfahan, Dept Math, POB 81746-73441, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Auslander-Gorenstein property; injective envelope; representations of quivers; NOETHERIAN-RINGS; SYZYGY MODULES; REPRESENTATIONS; QUIVERS; HOMOTOPY;
D O I
10.1080/00927872.2016.1233217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and Q be a finite and acyclic quiver. We present an explicit formula for the injective envelopes and projective precovers in the category Rep(Q, R) of representations of Q by left R-modules. We also extend our formula to all terms of the minimal injective resolution of RQ. Using such descriptions, we study the Auslander-Gorenstein property of path algebras. In particular, we prove that the path algebra RQ is k-Gorenstein if and only if Q = (A) over right arrow (n) and R is a k-Gorenstein ring, where n is the number of vertices of Q.
引用
收藏
页码:2557 / 2568
页数:12
相关论文
共 22 条
[1]  
Abrar M., 2012, PREPRINT
[2]   On the homotopy categories of projective and injective representations of quivers [J].
Asadollahi, J. ;
Eshraghi, H. ;
Hafezi, R. ;
Salarian, Sh .
JOURNAL OF ALGEBRA, 2011, 346 (01) :101-115
[3]  
Assem I., 2006, LOND MATH SOC STUD T, V1, P65, DOI DOI 10.1017/CB09780511614309
[4]   Syzygy modules for noetherian rings [J].
Auslander, M ;
Reiten, I .
JOURNAL OF ALGEBRA, 1996, 183 (01) :167-185
[5]  
Crawley-Boevey W., Lectures on Representations of Quivers
[6]   Projective representations of quivers [J].
Enochs, E ;
Estrada, S .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (10) :3467-3478
[7]   Flat covers and flat representations of quivers [J].
Enochs, E ;
Oyonarte, L ;
Torrecillas, B .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) :1319-1338
[8]   Injective Representations of Infinite Quivers. Applications [J].
Enochs, E. ;
Estrada, S. ;
Rozas, J. R. Garcia .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (02) :315-335
[9]  
Enochs E., 2002, Quaest. Math, V25, P531
[10]   A homotopy of quiver morphisms with applications to representations [J].
Enochs, EE ;
Herzog, I .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (02) :294-308