Stochastic calculus for symmetric Markov processes

被引:37
作者
Chen, Z. -Q. [1 ]
Fitzsimmons, P. J. [2 ]
Kuwae, K. [3 ]
Zhang, T. -S. [4 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Kumamoto Univ, Dept Math, Fac Educ, Kumamoto 8608555, Japan
[4] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
关键词
symmetric Markov process; time reversal; stochastic integral; generalized Ito formula; additive functional; martingale additive functional; dual additive functional; Revuz measure; dual predictable projection;
D O I
10.1214/07-AOP347
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an Ito formula for Dirichlet processes is obtained.
引用
收藏
页码:931 / 970
页数:40
相关论文
共 16 条
[1]  
[Anonymous], 1985, Z WAHRSCH VERW GEBIE, DOI DOI 10.1007/BF00535345
[2]   Perturbation of symmetric Markov processes [J].
Chen, Z.-Q. ;
Fitzsimmons, P. J. ;
Kuwae, K. ;
Zhang, T.-S. .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :239-275
[3]  
CHEN ZQ, 1994, NAGOYA MATH J, V136, P1
[4]   Absolute continuity of symmetric Markov processes [J].
Chen, ZQ ;
Fitzsimmons, PJ ;
Takeda, M ;
Ying, J ;
Zhang, TS .
ANNALS OF PROBABILITY, 2004, 32 (3A) :2067-2098
[5]   Non-symmetric perturbations of symmetric Dirichlet forms [J].
Fitzsimmons, PJ ;
Kuwae, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) :140-162
[6]  
FITZSIMMONS PJ, 1993, DIRICHLET FORMS STOC
[7]  
Fukushima, 1980, DIRICHLET FORMS MARK, V23
[8]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[9]  
GETOOR RK, 1985, SSP, P94
[10]  
HE SW, SEMIMARTINGALE THEOR