Common fixed points in cone metric spaces for CJM-pairs

被引:9
作者
Di Bari, Cristina [2 ]
Saadati, Reza [1 ]
Vetro, Pasquale [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
Cone metric spaces; CJM-pairs; Common fixed points; Common coincidence points; THEOREMS;
D O I
10.1016/j.mcm.2011.05.043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce some contractive conditions of Meir-Keeler type for two mappings, called f-MK-pair mappings and f-CJM-pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir-Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2348 / 2354
页数:7
相关论文
共 31 条
[1]   Common fixed point results for noncommuting mappings without continuity in cone metric spaces [J].
Abbas, A. ;
Jungck, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :416-420
[2]   Fixed and periodic point results in cone metric spaces [J].
Abbas, Mujahid ;
Rhoades, B. E. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (04) :511-515
[3]   Some Common Fixed Point Results in Cone Metric Spaces [J].
Arshad, Muhammad ;
Azam, Akbar ;
Vetro, Pasquale .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[4]  
Ciric L., 1981, Publ. Inst. Math. (Beograd) (N.S.), V30, P25
[5]  
De Pascale E., 1993, Matematiche, V48, P367
[6]   Weakly φ-pairs and common fixed points in cone metric spaces [J].
Di Bari C. ;
Vetro P. .
Rendiconti del Circolo Matematico di Palermo, 2009, 58 (1) :125-132
[7]   φ-pairs and common fixed points in cone metric spaces [J].
Di Bari C. ;
Vetro P. .
Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) :279-285
[8]  
DIBARI C, ARS COMBINA IN PRESS
[9]   A note on cone metric fixed point theory and its equivalence [J].
Du, Wei-Shih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2259-2261
[10]  
Feng YQ, 2010, FIXED POINT THEOR-RO, V11, P259