Interface Coordination Stabilizing Reversible Redox of Zinc for High-Performance Zinc-Iodine Batteries

被引:72
作者
Chen, Song [1 ]
Chen, Qianwu [1 ]
Ma, Jizhen [1 ]
Wang, Jianjun [2 ]
Hui, Kwan San [3 ]
Zhang, Jintao [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[3] Univ East Anglia, Fac Sci, Sch Engn, Norwich NR4 7TJ, Norfolk, England
基金
中国国家自然科学基金;
关键词
advanced Zn anodes; coordination chemistry; desolvation energy barrier; electrode-electrolyte interfaces; Zn-I; (2) batteries; ION BATTERIES; LONG-LIFE; DENDRITE; ELECTRODEPOSITION; ANODES; LAYER;
D O I
10.1002/smll.202200168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous Zn batteries (AZBs) have attracted extensive attention due to good safety, cost-effectiveness, and environmental benignity. However, the sluggish kinetics of divalent zinc ion and the growth of Zn dendrites severely deteriorate the cycling stability and specific capacity. The authors demonstrate modulation of the interfacial redox process of zinc via the dynamic coordination chemistry of phytic acid with zinc ions. The experimental results and theoretical calculation reveal that the in-situ formation of such inorganic-organic films as a dynamic solid-electrolyte interlayer is efficient to buffer the zinc ion transfer via the energy favorable coordinated hopping mechanism for the reversible zinc redox reactions. Especially, along the interfacial coating layer with porous channel structure is able to regulate the solvation structure of zinc ions along the dynamic coordination of the phytic acid skeleton, efficiently inhibiting the surface corrosion of zinc and dendrite growth. Therefore, the resultant Zn anode achieves low voltage hysteresis and long cycle life at rigorous charge and discharge circulation for fabricating highly robust rechargeable batteries. Such an advanced strategy for modulating ion transport demonstrates a highly promising approach to addressing the basic challenges for zinc-based rechargeable batteries, which can potentially be extended to other aqueous batteries.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode [J].
Bhoyate, Sanket ;
Mhin, Sungwook ;
Jeon, Jae-eun ;
Park, KyoungRyeol ;
Kim, Junyoung ;
Choi, Wonbong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) :27249-27257
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery [J].
Chen, Song ;
Li, Kang ;
Hui, Kwan San ;
Zhang, Jintao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
[4]   In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes [J].
Chu, Yuzhu ;
Zhang, Shu ;
Wu, Shuang ;
Hu, Zhenglin ;
Cui, Guanglei ;
Luo, Jiayan .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3609-3620
[5]   A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode [J].
Deng, Canbin ;
Xie, Xuesong ;
Han, Junwei ;
Tang, Yan ;
Gao, Jiawei ;
Liu, Cunxin ;
Shi, Xiaodong ;
Zhou, Jiang ;
Liang, Shuquan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (21)
[6]   Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J].
Du, Wencheng ;
Ang, Edison Huixiang ;
Yang, Yang ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3330-3360
[7]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[8]   Phytic acid conversion coating on Mg-Li alloy [J].
Gao, Lili ;
Zhang, Chunhong ;
Zhang, Milin ;
Huang, Xiaomei ;
Jiang, Xi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 485 (1-2) :789-793
[9]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[10]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)