ON THE DIMENSION OF SELF-AFFINE SETS AND MEASURES WITH OVERLAPS

被引:11
作者
Barany, Balazs [1 ,2 ]
Michalrams [3 ]
Simon, Karoly [4 ]
机构
[1] Budapest Univ Technol & Econ, MTA BME Stochast Res Grp, POB 91, H-1521 Budapest, Hungary
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[4] Budapest Univ Technol & Econ, Inst Math, Dept Stochast, POB 91, H-1521 Budapest, Hungary
基金
英国工程与自然科学研究理事会;
关键词
Self-affine measures; self-affine sets; Hausdorff dimension; HAUSDORFF DIMENSION; FRACTALS; ATTRACTORS;
D O I
10.1090/proc/13121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider diagonally affine, planar IFS Phi = {S-i(x, y)=(alpha(i)x + t(i,1), beta(i)y + t(i,2))}(i=1)(m). Combining the techniques of Hochman and Feng and Hu, we compute the Hausdorff dimension of the self-affine attractor and measures and we give an upper bound for the dimension of the exceptional set of parameters.
引用
收藏
页码:4427 / 4440
页数:14
相关论文
共 19 条
[11]   Hausdorff dimension for randomly perturbed self affine attractors [J].
Jordan, Thomas ;
Pollicott, Mark ;
Simon, Karoly .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :519-544
[12]   Overlapping self-affine sets of Kakeya type [J].
Kaenmaki, Antti ;
Shmerkin, Pablo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :941-965
[13]   On the distance sets of self-similar sets [J].
Orponen, Tuomas .
NONLINEARITY, 2012, 25 (06) :1919-1929
[14]   Resonance between Cantor sets [J].
Peres, Yuval ;
Shmerkin, Pablo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :201-221
[15]   ON THE HAUSDORFF DIMENSION OF SOME FRACTAL SETS [J].
PRZYTYCKI, F ;
URBANSKI, M .
STUDIA MATHEMATICA, 1989, 93 (02) :155-186
[16]   Overlapping self-affine sets [J].
Shmerkin, Pablo .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (04) :1291-1331
[17]   On the dimension of self-similar sets [J].
Simon, KR .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) :59-65
[18]   Measure and dimension for some fractal families [J].
Solomyak, B .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :531-546
[19]  
Spitzer Frank, 1976, GRADUATE TEXTS MATH, V34