Multinodal Load Forecasting in Power Electric Systems using a Neural Network with Radial Basis Function

被引:2
作者
Altran, Alessandra Bonato [1 ]
Minussi, Carlos Roberto [1 ]
Martins Lopes, Mara Lucia [2 ]
Chavarette, Fabio Roberto [2 ]
Peruzzi, Nelson Jose [3 ]
机构
[1] UNESP Univ Estadual Paulista, Fac Engn, Dept Elect Engn, Ave Jose Carlos Rossi 1370, BR-15385000 Ilha Solteira, SP, Brazil
[2] UNESP, Fac Engn, Dept Math, BR-15385000 Avenida, SP, Brazil
[3] UNESP, Dept Exact Sci, BR-13484900 Avenida, SP, Brazil
来源
HIGH PERFORMANCE STRUCTURES AND MATERIALS ENGINEERING, PTS 1 AND 2 | 2011年 / 217-218卷
关键词
Multinodal Forecast of Electric Load; Artificial Neural Networks; Backpropagation Algorithm; Radial Basis Function;
D O I
10.4028/www.scientific.net/AMR.217-218.39
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
引用
收藏
页码:39 / +
页数:2
相关论文
共 11 条
  • [1] Altran A.B., 2009, 8 LAT AM C EL GEN TR, P18
  • [2] Haykin S. S., 1994, Neural Networks: A Comprehensive Foundation
  • [3] Heimes F, 1998, IEEE SYS MAN CYBERN, P1609, DOI 10.1109/ICSMC.1998.728118
  • [4] Approximation of function and its derivatives using radial basis function networks
    Mai-Duy, N
    Tran-Cong, T
    [J]. APPLIED MATHEMATICAL MODELLING, 2003, 27 (03) : 197 - 220
  • [5] Egyptian Unified Grid hourly load forecasting using artificial neural network
    Mohamed, EA
    Mansour, MM
    El-Debeiky, S
    Mohamed, KG
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1998, 20 (07) : 495 - 500
  • [6] Applying radial basis functions
    Mulgrew, B
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (02) : 50 - 65
  • [7] Park D. C., 1991, IEEE T POWER SYSTEM, V6
  • [8] Simpson P.K., 1989, Artificial neural systems: foundations, paradigms, applications, and implementations
  • [9] Practical implementation of a hybrid fuzzy neural network for one-day-ahead load forecasting
    Srinivasan, D
    Tan, SS
    Chang, CS
    Chan, EK
    [J]. IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 1998, 145 (06) : 687 - 692
  • [10] Werbos P., 1974, THESIS HARVARD U CAM