Polynomial Szemeredi theorems for countable modules over integral domains and finite fields

被引:16
作者
Bergelson, V [1 ]
Leibman, A
McCutcheon, R
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2005年 / 95卷 / 1期
关键词
D O I
10.1007/BF02791504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a pair of vector spaces V and W over a countable field F and a probability space X, one defines a polynomial measure preserving action of V on X to be a composition T circle rho, where rho : V -> W is a polynomial mapping and T is a measure preserving action of W on X. We show that the known structure theory of measure preserving group actions extends to polynomial actions and establish a Furstenberg-style multiple recurrence theorem for such actions. Among the combinatorial corollaries of this result are a polynomial Szemeredi theorem for sets of positive density in finite rank modules over integral domains, as well as the following fact: Let T be a finite family of polynomials with integer coefficients and zero constant term. For any alpha > 0, there exists N is an element of N such that whenever F is afield with vertical bar F vertical bar >= N and E subset of F with vertical bar E vertical bar/vertical bar F vertical bar >= alpha, there exist u is an element of F, u not equal 0, and w is an element of E such that w + rho(u) is an element of E for all rho is an element of P.
引用
收藏
页码:243 / 296
页数:54
相关论文
共 16 条
[1]   IP-sets and polynomial recurrence [J].
Bergelson, V ;
Furstenberg, H ;
McCutcheon, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :963-974
[2]  
Bergelson V, 1997, AM J MATH, V119, P1173
[3]  
Bergelson V, 2000, LOND MATH S, V279, P167
[4]   Set-polynomials and polynomial extension of the Hales-Jewett Theorem [J].
Bergelson, V ;
Leibman, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :33-75
[5]   Polynomial extensions of van der Waerden's and Szemeredi's theorems [J].
Bergelson, V ;
Leibman, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :725-753
[6]  
BERGELSON V, 1996, LONDON MATH SOC LECT, V228, P273
[7]   A DENSITY VERSION OF THE HALES-JEWETT THEOREM [J].
FURSTENBERG, H ;
KATZNELSON, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1991, 57 :64-119
[8]   AN ERGODIC SZEMEREDI THEOREM FOR COMMUTING TRANSFORMATIONS [J].
FURSTENBERG, H ;
KATZNELSON, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1978, 34 :275-291
[9]   AN ERGODIC SZEMEREDI THEOREM FOR IP-SYSTEMS AND COMBINATORIAL THEORY [J].
FURSTENBERG, H ;
KATZNELSON, Y .
JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 :117-168
[10]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256