Enhancement of x-ray images for cargo and pallet search using FPCNN

被引:0
作者
Mahgoub, Ahmed G. [1 ]
Ei-Sahn, Ziad A. [1 ]
Abdel-Baky, Hossam-El-Deen M. [1 ]
El-Badawy, El-Sayed A. [1 ]
机构
[1] Univ Alexandria, Fac Engn, Dept Elect Engn, Alexandria 21544, Egypt
来源
WMSCI 2007 : 11TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, POST CONFERENCE ISSUE, PROCEEDINGS | 2007年
关键词
edge detection; feedback pulse coupled neural network (FPCNN); PCNN; segmentation; x-ray;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the feedback pulse coupled neural network (FPCNN) is used for the segmentation and edge detection of x-ray images generated from American Science and Engineering (AS&E) Inc. systems used for cargo and pallet search. We prove that this technique is able to isolate important parts of x-ray images. Furthermore, our results show that the FPCNN has a good ability to retrieve small density variations which is one of the main goals of x-ray inspection.
引用
收藏
页码:131 / 135
页数:5
相关论文
共 6 条
[1]  
BEEANOVIC V, 2000, THESIS ROYAL I TECHN
[2]   Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex [J].
Eckhorn, R. ;
Reitboeck, H. J. ;
Arndt, M. ;
Dicke, P. .
NEURAL COMPUTATION, 1990, 2 (03) :293-307
[3]  
Gose E., 1996, PATTERN RECOGNITION
[4]  
LI JM, 2006, ADV XRAY CONTAINER V
[5]  
NAZMY TM, 2005, 9 WORLD MULT SYST CY
[6]  
Pratt W.K., 2001, DIGITAL IMAGE PROCES