Proximinality in Banach spaces

被引:30
作者
Bandyopadhyay, Pradipta [2 ]
Li, Yongjin [3 ]
Lin, Bor-Luh [1 ]
Narayana, Darapaneni [4 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Indian Stat Inst, Stat Math Div, Kolkata 700108, India
[3] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[4] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
approximatively tau-compact; tau-strongly Chebyshev; metric projection; tau-almost locally uniformly rotund;
D O I
10.1016/j.jmaa.2007.10.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study approximatively tau-compact and tau-strongly Chebyshev sets, where tau is the norm or the weak topology. We show that the metric projection onto tau-strongly Chebyshev sets are norm-tau continuous. We characterize approximatively tau-compact and tau-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in tau-almost locally uniformly rotund spaces. We also prove some stability results on approximatively tau-compact and tau-strongly Chebyshev subspaces. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:309 / 317
页数:9
相关论文
共 15 条
[1]   Some generalizations of locally uniform rotundity [J].
Bandyopadhyay, P ;
Huang, D ;
Lin, BL ;
Troyanski, SL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (02) :906-916
[2]  
Bandyopadhyay Pradipta., 2004, COMMENT MATH PRACE M, V44, P163
[3]  
BROWN AL, 1974, MICH MATH J, V21, P145
[4]  
CLIFFORD A, 1970, MICH MATH J, V17, P401
[5]   Geometric properties of Banach spaces and the existence of nearest and farthest points [J].
Cobzas, Stefan .
ABSTRACT AND APPLIED ANALYSIS, 2005, (03) :259-285
[6]   EXISTENCE OF BEST APPROXIMATIONS [J].
DEUTSCH, F .
JOURNAL OF APPROXIMATION THEORY, 1980, 28 (02) :132-154
[7]   SOME GEOMETRIC PROPERTIES OF THE SPHERES IN A NORMED LINEAR SPACE [J].
FAN, K ;
GLICKSBERG, I .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (04) :553-568
[8]   Strong subdifferentiability of convex functionals and proximinality [J].
Godefroy, G ;
Indumathi, V ;
Lust-Piquard, F .
JOURNAL OF APPROXIMATION THEORY, 2002, 116 (02) :397-415
[9]  
Godefroy G., 2001, Rev. Mat. Complut., V14, P105, DOI [DOI 10.5209/REV_REMA.2001.V14.N1.17047, 10.5209/rev_REMA.2001.v14.n1.17047]
[10]   STRONGLY EXPOSED POINTS IN BOCHNER LP-SPACES [J].
GREIM, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (01) :81-84