Using the Kullback-Leibler Divergence to Combine Image Priors in Super-Resolution Image Reconstruction

被引:14
|
作者
Villena, Salvador [1 ]
Vega, Miguel [1 ]
Derin Babacan, S. [2 ]
Molina, Rafael [3 ]
Katsaggelos, Aggelos K. [2 ]
机构
[1] Univ Granada, Dept Lenguajes & Sistemas Informat, E-18071 Granada, Spain
[2] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[3] Univ Granada, Dept Ciencias Comput Inteligen Artificial, E-18071 Granada, Spain
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
Super resolution; combination of priors; variational methods; parameter estimation; Bayesian methods; PARAMETER-ESTIMATION; RESOLUTION;
D O I
10.1109/ICIP.2010.5650444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the combination of image priors in Super Resolution (SR) image reconstruction. Taking into account that each combination of a given observation model and a prior model produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational posterior distribution approximation on each posterior will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimizes a linear convex combination of the Kullback-Leibler divergences associated with each posterior distribution. We find this distribution in closed form and also relate the proposed approach to other prior combination methods in the literature. The estimated HR images are compared with images provided by other SR reconstruction methods.
引用
收藏
页码:893 / 896
页数:4
相关论文
共 50 条
  • [1] Kullback-Leibler Divergence Based Composite Prior Modeling for Bayesian Super-Resolution
    Shao, Wen-Ze
    Deng, Hai-Song
    Wei, Zhi-Hui
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (01) : 60 - 78
  • [2] Kullback–Leibler Divergence Based Composite Prior Modeling for Bayesian Super-Resolution
    Wen-Ze Shao
    Hai-Song Deng
    Zhi-Hui Wei
    Journal of Scientific Computing, 2014, 60 : 60 - 78
  • [3] IMAGE PRIOR COMBINATION IN SUPER-RESOLUTION IMAGE RECONSTRUCTION
    Villena, Salvador
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 616 - 620
  • [4] DEEP MR IMAGE SUPER-RESOLUTION USING STRUCTURAL PRIORS
    Cherukuri, Venkateswararao
    Guo, Tiantong
    Schiff, Steven J.
    Monga, Vishal
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 410 - 414
  • [5] SUPER-RESOLUTION IMAGE RECONSTRUCTION USING DIFFUSE SOURCE MODELS
    Ellis, Michael A.
    Viola, Francesco
    Walker, William F.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2010, 36 (06) : 967 - 977
  • [6] An Overview of Image Super-resolution Reconstruction Algorithm
    Niu, Xiaoming
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 16 - 18
  • [7] Guaranteed Reconstruction for Image Super-resolution
    Graba, Fares
    Loquin, Kevin
    Comby, Frederic
    Strauss, Olivier
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [8] Stochastic super-resolution image reconstruction
    Tian, Jing
    Ma, Kai-Kuang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (03) : 232 - 244
  • [9] IMAGE SUPER-RESOLUTION RECONSTRUCTION USING MAP ESTIMATION
    Lu, Xin-Long
    Chen, Sheng-Yong
    Wang, Xin
    Liu, Sheng
    Yao, Chunyan
    Huang, Xianping
    PROCEEDINGS 27TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2013, 2013, : 838 - +
  • [10] Super-resolution reconstruction of image sequences
    Elad, M
    Feuer, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (09) : 817 - 834