Superfine Expanded Graphite with Large Capacity for Lithium Storage

被引:13
作者
Kaskhedikar, Nitin A. [1 ]
Cui, Guanglei [1 ]
Maier, Joachim [1 ]
Fedorov, Vladimir [2 ]
Makotchenko, Victor [2 ]
Simon, Arndt [1 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[2] Russian Acad Sci, Siberian Branch, Nikolaev Inst Inorgan Chem, Novosibirsk 630090, Russia
来源
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE | 2011年 / 637卷 / 05期
关键词
Graphene; Lithium storage; Electrochemistry; Carbon vacancies; Nanoionics; INSERTION; INTERCALATION; CARBONS; ANODE;
D O I
10.1002/zaac.201000364
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A superfine expanded graphite (s-EG) fiber material was investigated as an anode material for lithium-based batteries. The fibers were prepared by decomposition of dicarbon monofluoride-intercalated graphite. The high resolution transmission electron microscopy (HRTEM) images showed the fiber thickness in range of 2-3 nm with several microns in length. Lithium storage capacity in this material was measured in lithium half cells. High lithium storage capacity of about 1000 mAh.g(-1) at a rate of C/10, corresponding to Li3C6 composition was obtained. The material showed fairly good rate capability exhibiting lithium storage capabilities even at 60C. As a effect of ball milling, the s-EG showed crystallographic ordering in the sample with reduced the lithium storage capacity corresponding to composition of LiC6. A simple mathematical relation to account for the excess lithium storage capacity in this material is put forward.
引用
收藏
页码:523 / 529
页数:7
相关论文
共 26 条
[1]   Small-angle neutron scattering from samples of expanded carbon [J].
Bogdanov, S. G. ;
Valiev, E. Z. ;
Dorofeev, Yu. A. ;
Pirogov, A. N. ;
Skryabin, Yu. N. ;
Makotchenko, V. G. ;
Nazarov, A. S. ;
Fedorov, V. E. .
CRYSTALLOGRAPHY REPORTS, 2006, 51 (Suppl 1) :S12-S15
[2]   ELECTROCHEMICAL INTERCALATION OF LITHIUM INTO SOLID C60 [J].
CHABRE, Y ;
DJURADO, D ;
ARMAND, M ;
ROMANOW, WR ;
COUSTEL, N ;
MCCAULEY, JP ;
FISCHER, JE ;
SMITH, AB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (02) :764-766
[3]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[4]   DEPENDENCE OF THE ELECTROCHEMICAL INTERCALATION OF LITHIUM IN CARBONS ON THE CRYSTAL-STRUCTURE OF THE CARBON [J].
DAHN, JR ;
SLEIGH, AK ;
SHI, H ;
REIMERS, JN ;
ZHONG, Q ;
WAY, BM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1179-1191
[5]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[6]   Surface-fluorinated graphite anode materials for Li-ion batteries [J].
Groult, H ;
Nakajima, T ;
Perrigaud, L ;
Ohzawa, Y ;
Yashiro, H ;
Komaba, S ;
Kumagai, N .
JOURNAL OF FLUORINE CHEMISTRY, 2005, 126 (07) :1111-1116
[7]  
Hazra A, 2002, J NEW MAT ELECTR SYS, V5, P53
[8]  
Herold A., 1987, Chemical Physics of Intercalation, P3, DOI [10.10 07/978-1-4757-9649-0_1, DOI 10.1007/978-1-4757-9649-0_1]
[9]   Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability [J].
Hu, Yong-Sheng ;
Adelhelm, Philipp ;
Smarsly, Bernd M. ;
Hore, Sarmimala ;
Antonietti, Markus ;
Maier, Joachim .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (12) :1873-1878
[10]   Electrochemical insertion of lithium into polyacrylonitrile-based disordered carbons [J].
Jung, Y ;
Suh, MC ;
Lee, H ;
Kim, M ;
Lee, SI ;
Shim, SC ;
Kwak, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (12) :4279-4284