GEOMETRY OF THE INTERSECTION RING AND VANISHING RELATIONS IN THE COHOMOLOGY OF THE MODULI SPACE OF PARABOLIC BUNDLES ON A CURVE

被引:0
作者
Gamse, Elisheva Adina [1 ]
Weitsman, Jonathan [1 ]
机构
[1] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
关键词
RIEMANN SURFACE; VECTOR-BUNDLES; STABLE BUNDLES; HOLOMORPHIC BUNDLES; FLAT CONNECTIONS; ALGEBRAIC CURVE; VERLINDE FORMULA; ARBITRARY RANK; CHERN CLASSES; PAIRINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ring generated by the Chern classes of tautological line bundles on the moduli space of parabolic bundles of arbitrary rank on a Riemann surface. We show the Poincare duals to these Chern classes have simple geometric representatives. We use this construction to show that the ring generated by these Chern classes vanishes below the dimension of the moduli space, in analogy with the Newstead- Ramanan conjecture for stable bundles.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 37 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]  
Baranovsky V., 1994, IZV RUSS ACAD NAUK, V58, P204
[3]   Bundle gerbes and moduli spaces [J].
Bouwknegt, Peter ;
Mathai, Varghese ;
Wu, Siye .
JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (01) :1-10
[4]  
Brion M, 2005, ASIAN J MATH, V9, P489
[5]  
Donaldson S.K., 1993, TOPOLOGICAL METHODS, P137
[6]   The Pontryagin rings of moduli spaces of arbitrary rank holomorphic bundles over a Riemann surface [J].
Earl, R ;
Kirwan, F .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :835-846
[7]   Complete sets of relations in the cohomology rings of moduli spaces of holomorphic bundles and parabolic bundles over a Riemann surface [J].
Earl, R ;
Kirwan, F .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 89 :570-622
[8]   The Mumford relations and the moduli of rank three stable bundles [J].
Earl, R .
COMPOSITIO MATHEMATICA, 1997, 109 (01) :13-48
[9]  
GIESEKER D, 1984, J DIFFER GEOM, V19, P173
[10]   Intersection numbers on moduli spaces and symmetries of a Verlinde formula [J].
Herrera, R ;
Salamon, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (03) :521-534