Blind Image Tamper Detection Based on Multimodal Fusion

被引:0
作者
Chetty, Girija [1 ]
Singh, Monica [2 ]
White, Matthew [2 ]
机构
[1] Univ Canberra, Fac Informat Sci & Engn, Canberra, ACT 2601, Australia
[2] Video Analyt Pty Ltd, Melbourne, Vic, Australia
来源
NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II | 2010年 / 6444卷
关键词
image tampering; digital forensics; feature selection; image fusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel feature processing approach based on fusion of noise and quantization residue features for detecting tampering or forgery in video sequences. The evaluation of proposed residue features - the noise residue features and the quantization features, their transformation in optimal feature subspace based on fisher linear discriminant features and canonical correlation analysis features, and their subsequent fusion for emulated copy-move tamper scenarios shows a significant improvement in tamper detection accuracy.
引用
收藏
页码:557 / +
页数:3
相关论文
共 15 条
  • [1] [Anonymous], P ACM WORKSH MULT SE
  • [2] [Anonymous], P IEEE INT C AC SPEE
  • [3] Borga M., 2000, P SSAB 2000 HALMST, P13
  • [4] Robust face-voice based speaker identity verification using multilevel fusion
    Chetty, Girija
    Wagner, Michael
    [J]. IMAGE AND VISION COMPUTING, 2008, 26 (09) : 1249 - 1260
  • [5] Region filling and object removal by exemplar-based image inpainting
    Criminisi, A
    Pérez, P
    Toyama, K
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (09) : 1200 - 1212
  • [6] Dirik A.E., 2009, P IEEE ICIP 2009 CAI
  • [7] Fridrich J., DETECTION COPY MOVE
  • [8] Gou H., 2007, P IEEE INT C IM PROC
  • [9] Hsu C., VIDEO FORGERY DETECT
  • [10] HSU YF, 2006, ICME TOR CAN JUL