Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

被引:146
作者
Carmichael, Matthew J. [1 ,2 ,3 ]
Inglis, Gordon N. [1 ,2 ]
Badger, Marcus P. S. [1 ,2 ,3 ,4 ]
Naafs, B. David A. [1 ,2 ]
Behrooz, Leila [1 ,2 ]
Remmelzwaal, Serginio [2 ,3 ,5 ]
Monteiro, Fanny M. [3 ]
Rohrssen, Megan [1 ,2 ,7 ]
Farnsworth, Alexander [2 ,3 ,6 ]
Buss, Heather L. [2 ,5 ]
Dickson, Alexander J.
Valdes, Paul J. [2 ,3 ]
Lunt, Daniel J. [2 ,3 ]
Pancost, Richard D. [1 ,2 ]
机构
[1] Univ Bristol, Organ Geochem Unit, Sch Chem, Bristol, Avon, England
[2] Univ Bristol, Cabot Inst, Bristol, Avon, England
[3] Univ Bristol, BRIDGE, Sch Geog Sci, Bristol, Avon, England
[4] Open Univ, Sch Environm Earth & Ecosyst Sci, Milton Keynes, Bucks, England
[5] Univ Bristol, Sch Earth Sci, Bristol, Avon, England
[6] Univ Oxford, Dept Earth Sci, Oxford, England
[7] Cent Michigan Univ, Dept Earth & Atmospher Sci, Mt Pleasant, MI 48859 USA
基金
欧洲研究理事会;
关键词
Paleohydrology; Data-model comparisons; Paleogene; Hyperthermals; Proxies; Climate models; CARBON-ISOTOPE EXCURSION; PLANKTIC FORAMINIFERAL TURNOVER; ATMOSPHERIC CO2 CONCENTRATION; TERRESTRIAL ORGANIC-MATTER; DABABIYA QUARRY SECTION; SEA-LEVEL RISE; CLIMATE-CHANGE; BIGHORN BASIN; EARLY PALEOGENE; ENVIRONMENTAL-CHANGES;
D O I
10.1016/j.gloplacha.2017.07.014
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, similar to 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 degrees C and the onset likely took < 20 kyr. The PETM provides a case study of the impacts of rapid global warming on the Earth system, including both hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous some regions are associated with increased precipitation-evaporation (P-E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model simulated aridity and simulation of extreme precipitation events.
引用
收藏
页码:114 / 138
页数:25
相关论文
共 299 条
[1]   A simple framework for evaluating regional wetland ecohydrological response to climate change with case studies from Great Britain [J].
Acreman, M. C. ;
Blake, J. R. ;
Booker, D. J. ;
Harding, R. J. ;
Reynard, N. ;
Mountford, J. O. ;
Stratford, C. J. .
ECOHYDROLOGY, 2009, 2 (01) :1-17
[2]   Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record [J].
Adams, Jason S. ;
Kraus, Mary J. ;
Wing, Scott L. .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2011, 309 (3-4) :358-366
[3]   Constraints on future changes in climate and the hydrologic cycle [J].
Allen, MR ;
Ingram, WJ .
NATURE, 2002, 419 (6903) :224-+
[4]  
Allen PA, 2008, GEOL SOC SPEC PUBL, V296, P7, DOI 10.1144/SP296.2
[5]   Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate [J].
Anagnostou, Eleni ;
John, Eleanor H. ;
Edgar, Kirsty M. ;
Foster, Gavin L. ;
Ridgwell, Andy ;
Inglis, Gordon N. ;
Pancost, Richard D. ;
Lunt, Daniel J. ;
Pearson, Paul N. .
NATURE, 2016, 533 (7603) :380-+
[6]  
Andreasson F.P., 1996, Proceedings of the Ocean Drilling Program, Scientific Results, V151, P583
[7]  
[Anonymous], 2013, CLIMATE CHANGE 2013
[8]   Transformation of tectonic and climatic signals from source to sedimentary archive [J].
Armitage, John J. ;
Duller, Robert A. ;
Whittaker, Alex C. ;
Allen, Philip A. .
NATURE GEOSCIENCE, 2011, 4 (04) :231-235
[9]   Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum [J].
Aze, T. ;
Pearson, P. N. ;
Dickson, A. J. ;
Badger, M. P. S. ;
Bown, P. R. ;
Pancost, R. D. ;
Gibbs, S. J. ;
Huber, B. T. ;
Leng, M. J. ;
Coe, A. L. ;
Cohen, A. S. ;
Foster, G. L. .
GEOLOGY, 2014, 42 (09) :739-742
[10]   Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming [J].
Aziz, Hayfaa Abdul ;
Hilgen, Frits J. ;
van Luijk, Gerson M. ;
Sluijs, Appy ;
Kraus, Mary J. ;
Pares, Josep M. ;
Gingerich, Philip D. .
GEOLOGY, 2008, 36 (07) :531-534