An Application of Renyi Entropy Segmentation In Fault Detection of Rotating Machinery

被引:0
|
作者
Popescu, Theodor D. [1 ]
Dumitrascu, Bogdan [2 ]
机构
[1] Natl Inst R&D Informat, 8-10 Averescu Ave, Bucharest 011455, Romania
[2] Dunarea de Jos Univ Galati, Galati 800008, Romania
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents a new approach for change detection in vibration signals of a rotating machine using time-frequency information content, making use of the short-term time-frequency Renyi entropy and a segmentation algorithm, based on maximum a posteriori probability (MAP) estimator. The segmentation algorithm operates on Renyi entropy, as a new space of decision. This approach enables more robust change detection in vibrating signals. Finally, we present an application of the proposed approach for a rotating machine, a pump, after the blind source separation (BSS) of the main vibration sources has been performed.
引用
收藏
页码:288 / 295
页数:8
相关论文
共 50 条
  • [1] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [2] Fault detection and diagnosis in rotating machinery
    Loparo, KA
    Afshari, N
    Abdel-Magied, M
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2986 - 2991
  • [3] Application of wavelet packet to fault detection in rotating machinery and simulation of matlab
    Zhang, SQ
    Zhang, JC
    Xu, H
    Cui, DY
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 1, 2004, : 573 - 576
  • [4] Modified Hierarchical Multiscale Dispersion Entropy and its Application to Fault Identification of Rotating Machinery
    Zhou, Fuming
    Shen, Jinxing
    Yang, Xiaoqiang
    Liu, Xiaolin
    Liu, Wuqiang
    IEEE ACCESS, 2020, 8 : 161361 - 161376
  • [5] Cumulative spectrum distribution entropy for rotating machinery fault diagnosis
    Wang, Shun
    Li, Yongbo
    Noman, Khandaker
    Wang, Dong
    Feng, Ke
    Liu, Zheng
    Deng, Zichen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 206
  • [6] An optimal lifting multiwavelet for rotating machinery fault detection
    Jiang Hongkai
    Han, Wang
    Yong, Zhou
    JOURNAL OF VIBROENGINEERING, 2014, 16 (01) : 303 - 311
  • [7] ROTATING MACHINERY FAULT DETECTION USING EEMD AND BISPECTRUM
    Lei, Yaguo
    Zuo, Ming J.
    Hoseini, Mohammad
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A AND B, 2010, : 81 - 86
  • [8] Fault detection in rotating machinery using spectral modeling
    Dietel, Franz
    Schulze, Rico
    Richter, Hendrik
    Jaekel, Jens
    MECATRONICS REM 2012, 2012, : 353 - 357
  • [9] An optimal lifting multiwavelet for rotating machinery fault detection
    Jiang, H. (jianghk@nwpu.edu.cn), 1600, Vibromechanika (16):
  • [10] Application of Deep Learning in Fault Diagnosis of Rotating Machinery
    Jiang, Wanlu
    Wang, Chenyang
    Zou, Jiayun
    Zhang, Shuqing
    PROCESSES, 2021, 9 (06)