High Output Compound Triboelectric Nanogenerator Based on Paper for Self-Powered Height Sensing System

被引:26
|
作者
Xia, Kequan [1 ]
Zhu, Zhiyuan [1 ]
Zhang, Hongze [2 ]
Du, Chaolin [1 ]
Wang, Rongji [1 ]
Xu, Zhiwei [1 ]
机构
[1] Zhejiang Univ, Ocean Coll, Key Lab Ocean Observat Imaging Testbed Zhejiang P, Hangzhou 316021, Zhejiang, Peoples R China
[2] Nanjing Elect Devices Inst, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator (TENG); self-powered system; micro/nano fabrication; paper; height sensor; ENERGY-CONVERSION; LOW-COST; PERFORMANCE; ELECTRONICS; OPTIMIZATION; FABRICATION; CONTACT; DENSITY;
D O I
10.1109/TNANO.2018.2869934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Flexible electronics based on the paper have attracted significant attention. A paper-based triboelectric nanogenerator (TENG) consisting of commercial and low-cost materials, e.g., printer paper, polytetrafiuoroethylene tape, and conductive ink, was proposed in this study. This TENG unit can directly illuminate 24 blue commercial LEDs. Furthermore, compound paper-based TENGs were developed and a considerable enhancement of the electrical output performance was thereby realized. These compound TENGs can also serve as a height sensor.
引用
收藏
页码:1217 / 1223
页数:7
相关论文
共 50 条
  • [1] Triboelectric Nanogenerator for Self-Powered Gas Sensing
    Zhang, Dongzhi
    Zhou, Lina
    Wu, Yan
    Yang, Chunqing
    Zhang, Hao
    SMALL, 2024, 20 (51)
  • [2] Self-powered wireless sensing technologies based on triboelectric nanogenerator
    Si, Jiawei
    Yang, Jin
    Zhu, Zhaofeng
    Li, Zhukun
    Lai, Haiyang
    Han, Lei
    NANOTECHNOLOGY, 2025, 36 (13)
  • [3] A paper triboelectric nanogenerator for self-powered electronic systems
    Mao, Yanchao
    Zhang, Nan
    Tang, Yingjie
    Wang, Meng
    Chao, Mingju
    Liang, Erjun
    NANOSCALE, 2017, 9 (38) : 14499 - 14505
  • [4] Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems
    Tang, Qian
    Guo, Hengyu
    Yan, Peng
    Hu, Chenguo
    ECOMAT, 2020, 2 (04)
  • [5] High output triboelectric nanogenerator based on scotch tape for self-powered flexible electrics
    Han, Gang
    Wu, Bin
    Pu, Yilin
    MATERIALS TECHNOLOGY, 2022, 37 (04) : 224 - 229
  • [6] An instantaneous self-powered wireless sensing system based on a triboelectric nanogenerator and the human body
    Xu, Liangquan
    Wu, Jianhui
    Zhang, Kaihang
    Lu, Jiaqi
    Li, Jie
    Hazarika, Dinku
    Jin, Hao
    Luo, Jikui
    NANOSCALE, 2024, 16 (41) : 19355 - 19363
  • [7] Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator
    Xu, Liangquan
    Xuan, Weipeng
    Chen, Jinkai
    Zhang, Chi
    Tang, Yuzhi
    Huang, Xiwei
    Li, Wenjun
    Jin, Hao
    Dong, Shurong
    Yin, Wuliang
    Fu, Yongqing
    Luo, Jikui
    NANO ENERGY, 2021, 83
  • [8] Advanced triboelectric nanogenerator based self-powered electrochemical system
    Xuan, Ningning
    Song, Chunhui
    Cheng, Gang
    Du, Zuliang
    Chemical Engineering Journal, 2024, 481
  • [9] Advanced triboelectric nanogenerator based self-powered electrochemical system
    Xuan, Ningning
    Song, Chunhui
    Cheng, Gang
    Du, Zuliang
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [10] Self-Powered Pedometer Based on Triboelectric Nanogenerator
    Liu, Yan
    Ouyang, Han
    Liu, Zhuo
    Zou, Yang
    Zhao, Lu-Ming
    Tian, Jing-Jing
    Li, Ming
    Jiang, Wen
    Li, Zhou
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2017, 46 (05): : 790 - 794