Global superconvergence of the mixed finite element methods for 2-D Maxwell equations

被引:0
作者
Lin, JF [1 ]
Lin, Q
机构
[1] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, LSEC, ICMSEC, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
Maxwell equations; mixed finite element; superconvergence; postprocessing;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Superconvergence of the mixed finite element methods for 2-d Maxwell equations is studied in this paper. Two order of superconvergent factor can be obtained for the k-th Nedelec elements on the rectangular meshes.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
[21]   A new superconvergence for mixed finite element approximations [J].
Ewing, RE ;
Liu, MJ ;
Wang, JP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2133-2150
[22]   SUPERCONVERGENCE OF THE VELOCITY ALONG THE GAUSS LINES IN MIXED FINITE-ELEMENT METHODS [J].
EWING, RE ;
LAZAROV, RD ;
WANG, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :1015-1029
[23]   Uniform convergence and superconvergence of mixed finite element methods on anisotropically refined grids [J].
Li, JC ;
Wheeler, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :770-798
[24]   Superconvergence of quadratic optimal control problems by triangular mixed finite element methods [J].
Chen, Yanping .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (08) :881-898
[25]   Stability and superconvergence analysis of the FDTD scheme for the 2D Maxwell equations in a lossy medium [J].
GAO LiPing1 ;
2LSEC and Institute of Applied Mathematics .
Science China Mathematics, 2011, (12) :2693-2712
[26]   Stability and superconvergence analysis of the FDTD scheme for the 2D Maxwell equations in a lossy medium [J].
LiPing Gao ;
Bo Zhang .
Science China Mathematics, 2011, 54 :2693-2712
[27]   Stability and superconvergence analysis of the FDTD scheme for the 2D Maxwell equations in a lossy medium [J].
Gao LiPing ;
Zhang Bo .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) :2693-2712
[28]   Superconvergence of Finite Volume Methods for the Stokes Equations [J].
Cui, Ming ;
Ye, Xiu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (05) :1212-1230
[29]   GLOBAL SUPERCONVERGENCE OF THE LOWEST-ORDER MIXED FINITE ELEMENT ON MILDLY STRUCTURED MESHES [J].
Li, Yu-Wen .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) :792-815
[30]   Global L2 superconvergence of the tetrahedral quadratic finite element [J].
Yang, Peng ;
Li, Yonghai ;
Wang, Xiang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 133 :104-123